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Cooperative Target Enclosing Control of Multiple

Mobile Robots Subject to Input Disturbances
Xiao Yu, Member, IEEE, Ji Ma, Ning Ding, and Aidong Zhang

Abstract—This paper investigates the cooperative target en-
closing of multiple unicycle-type mobile robots subject to input
disturbances. The objective is to make all robots orbit around
a given stationary target, and maintain evenly spaced along a
common circle. The network of the multi-robot systems is set
in a cyclic pursuit manner. A dynamic control law is developed
for the cooperative target enclosing of the multi-robot systems,
while tackling the heterogeneous input disturbances generated
by linear exogenous systems. The proposed control law requires
each robot to use the relative displacement measurements with
respect to the target and its neighbors. It is shown that global
asymptotic stability of the closed-loop multi-robot systems can be

guaranteed in the presence of a large class of input disturbance
signals. Finally, simulation results illustrate the effectiveness of
our approach.

Index Terms—Cooperative control, formation control, mobile
robots, multi-agent systems, target enclosing, unicycles.

I. INTRODUCTION

S
INCE the last decade, formation control of multiple mo-

bile robots has attracted much research interest [1], such

as the autonomous surface vehicles [2], the wheeled mobile

robots [3], the unmanned underwater vehicles [4] and the

unmanned helicopters [5]. In particular, many works focus on

the cooperative target enclosing which usually requires a team

of mobile robots to orbit around a target and maintain evenly

spaced along a common circle. This robotic formation has

wide application prospects in monitoring or rescuing a target,

for example, the ocean sampling [6].

In fact, control of mobile robotic system is a long-term

hot research topic, for instance [3, 7–9]. As the unicycle

model is generally used to model the simplified model of the

wheeled mobile robot and the unmanned aerial vehicle [10].

Significant effort was made to the cooperative target enclosing
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control problem of unicycle-type mobile robots. For robots

with identical linear velocity, a gradient control law based

on potential function was developed for multi-robot systems

with a fully connected network in [11], and an extension to a

balanced network was presented in [12]. In [13], the sensory

limitation in visibility of each robot was taken into account.

In [14], a hybrid switching control law was developed based

on the distance between each robot and target. In [15], it was

shown that each robot is able to encircle the target by only

using the bearing angle with respect to the target. In [16],

robots were made to form an evenly spaced pattern and the size

of a disk-like target was additionally considered. In [17, 18],

the communication range of each robot was considered, and

the results, as well as those for the cyclic pursuit problem,

for instance [19, 20] can be applied to target enclosing if

there is one specified robot orbiting around the target. In

[21], a dynamic control law was proposed for ring-networked

robots with velocity constraints. For multi-robot systems with

acceleration inputs and general network topology, a control

law based on a set reduction theorem was deigned in [22],

and it was shown in [23] that global asymptotical stability of

the closed-loop system can be guaranteed. Besides, to achieve

nonidentical orbits around the target, nonidentical fixed linear

velocities were set in [24, 25], and nonidentical control laws

were used in [26].

However, all aforementioned works were developed for

the unicycle-type mobile robots without any disturbances.

These results may not be effective in the presence of input

disturbances. For the trajectory tracking control problem of

one single mobile robot, bounded kinematic disturbances

violating the constraint of nonholonomic pure rolling and non-

slipping were addressed in [27]. A comprehensive study on

modeling and control of a mobile robot with the disturbances

modelling the wheel skidding and slipping was given in

[28]. For multiple mobile robots, in [29], the input additive

disturbances in the linearized tracking error kinematics was

considered, and the leader-follower formation tracking control

problem was solved with the extended state observer-based

distributed model predictive control approach. As pointed out

in [30], the adaptive robust integral of the sign of the error

(RISE) feedback can be taken as a robustifying mechanism

to compensate for additive disturbances. This method has

been applied to the electromechanical servo system [30] and

the leader-follower formation control of mobile robots using

backstepping and a neural network [31]. Some recent robust

control and filter approach also addressed the uncertainty in

robotic systems. In [32], the tracking control problem of a class

of nonlinear systems subject to mismatched uncertainties was
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investigated and the proposed scheme was applied to a robotic

manipulator. In [33] and [34], the Huber based method was

used in robust filter design to achieve the attitude estimation

of small satellite.

In most related existing works, the input disturbances of

mobile robots were assumed as the outputs of linear exoge-

nous systems. In the case where the exo-systems satisfy a

certain condition such that the input disturbance signals will

not diverge, the consensus control problem was studied in

[35], and the rendezvous control and the tracking control

problems were solved respectively in [36]. In the case where

the system matrices of the exo-systems are skew-symmetric,

equivalently input disturbances are harmonic and constant

signals, internal-model-based controllers were proposed for

the formation control problem of mobile robots with rigid

body dynamics in [37], and the consensus control problem

of unicycle-type mobile robots in [38]. For more general

disturbance signals, another condition on the exo-systems

was considered in [39] where the target enclosing and the

trajectory tracking control problems of one mobile robot were

solved respectively. Considering a class of input disturbances

with known bounds, the sliding mode control technique was

employed to achieve the consensus for mobile robots with

velocity inputs in [40] and with acceleration inputs in [41],

which may lead to chattering in the headings angles of robots.

To the best of our knowledge, there is no open existing result

addressing the cooperative target enclosing control problem of

multiple unicycle-type mobile robots with input disturbances.

To solve this problem, we study the mobile robots in cyclic

pursuit, and take into account heterogeneous input distur-

bances in the kinematic unicycle model. A dynamic control

law is proposed such that all controlled mobile robots are able

to not only orbit around a target in a common circle but also

maintain evenly spaced along the circle.

The major contribution is that the global asymptotical

stability of the closed-loop multi-robot systems subject to input

disturbances can be guaranteed. In the aforementioned existing

results on the cooperative target enclosing control problem,

no input disturbance was considered. Our result achieves full

rejection to a large class of input disturbances considered

in [39]. Note that target enclosing for only one robot was

studied in [39]. The concerned disturbances are the linear

combination of a finite number of step signals and sinusoidal

signals, which includes the harmonic and constant disturbance

signals in [37, 38] as a special case, and describe a larger class

of disturbance signals than than in [35, 36]. Our proposed

control law does not lead to any chattering, while the control

law in [40] may result in some. Note that the cooperative target

enclosing of multiple robots was not studied in [35, 36, 40].

The remainder is organized as follows. In Section II, the

problem formulation is presented. In Section III, the proposed

control law is given, which is followed by the main theorem

and its proof, and some discussions. Section IV shows the

simulation results, and Section V draws the conclusion.

Notations: The norm ‖x‖ of vector x = [x1, ..., xn]
T ∈ R

n

is defined as ‖x‖ =
√

∑n

i=1 |xi|2. The vectors 0 and 1 denote

0 = [0, ..., 0]T and 1 = [1, ..., 1]T. For a matrix A, A > (≥) 0
and A < (≤) 0 mean A is positive definite (semi-definite) and

negative definite (semi-definite) respectively.

II. PROBLEM FORMULATION

Consider N(N ≥ 2) unicycle-type mobile robots subject

to heterogeneous input disturbances. The kinematics of each

robot i, i = 1, ..., N , is described by

ẋi = (vi + ρi) cos θi,

ẏi = (vi + ρi) sin θi,

θ̇i = ωi + ̺i, (1)

where pi := [xi yi]
T ∈ R

2 and θi ∈ R are the position and

heading angle of robot i in the inertial frame respectively, see

Fig. 1(a). vi ∈ R and ωi ∈ R are the designed linear velocity

and angular velocity respectively and they are the control

inputs of system (1). [ρi ̺i]
T ∈ R

2 is the input disturbance

which can be written as the output of an exogenous system

żi = Sizi, ρi = bT

izi, ̺i = cT

izi, (2)

where zi ∈ R
mi is the state the exo-system (2), bi, ci ∈

R
mi are constant vectors, and Si ∈ R

mi×mi is the system

matrix. In this paper, all exo-systems (2) satisfy the following

assumption:

Assumption 1: The exo-system (2) is marginally stable, i.e.,

the eigenvalues of Si have non-positive real part and those

eigenvalues with zero real part are semi-simple.

The objective of the cooperative target enclosing control

problem is to design [vi ωi]
T, such that all controlled robots

are able to not only orbit around a given target located at

p0 := [x0 y0]
T counterclockwise with a given radius r, but

also maintain evenly spaced along the common circle.

The network for the multi-robot systems is modeled by a

graph G = {O, E}, where O = {1, ..., N} is a finite set of

nodes representing N mobile robots, and E ⊆ {(j, i) : j 6=
i, i, j ∈ O} is a set of edges containing directed edges from

node j to node i. The information of robot j is available to

robot i if (j, i) ∈ E , j 6= i. Node j is called the neighbor of

node i if (j, i) ∈ E , and all neighbors of node i locate in a set

Ni ⊆ O.

Denote pi
k = [xik yik]

T, k ∈ {0, j}, j ∈ Ni, as the

coordinates of the target and the neighbors of robot i measured

in the Frenet-Serret frame of robot i respectively, i.e.,

pi
k = R(θi)(pk − pi), R(·) =

[

cos(·) sin(·)
− sin(·) cos(·)

]

. (3)

For each robot i, pi
k can be obtained by directly measuring

the relative distances dik and the bearing angles βi
k, see Fig.

1(a) for illustration. Define ϕji = ∠j0i ∈ [−π, π), i, j ∈ O,

as the separation angle between robots j and i, see Fig. 1(a).

Note that if pi
0 and pi

j , j ∈ Ni, are obtained by robot i, then

ϕji can be directly calculated in the triangle △j0i.
Similar to [42, 43], the network topology of the multi-robot

systems is set in a cyclic pursuit manner, and is determined

by the relative displacements of mobile robots with respect to

the target. As in [42, 43], all mobile robots are dispersed in a

counterclockwise star pattern with respect to the target at the

initial time, as shown in Fig. 1(b), i.e., the initial positions of

the target and all mobile robots satisfy:
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(a) Variables

1

2

3

4

5

(b) Cyclic pursuit manner

Fig. 1. Illustration of the variables and the cyclic pursuit manner.

Assumption 2: All mobile robots and the target have distinct

initial positions, i.e., pi(t0) 6= pj(t0) 6= p0(t0), ∀i 6= j.

Then, the group of mobile robots are sorted based on the

real-time counterclockwise radial order around the target. In

the case where ϕji(t) = 0, d
j
0(t) > di0(t) > 0, robot i is

sorted before robot j in the counterclockwise radial order. For

example, the counterclockwise radial order shown in Fig. 1(b)

is 1 → 2 → 5 → 3 → 4 → 1. At each time instant, each

robot i is required to obtain ϕji with respect to two robots

sorted before robot i and ϕij with respect to two robots sorted

after robot i in the counterclockwise radial order. Denote these

four neighbors of robot i as robots i++, i+, i-, and i--

respectively. That is, the following assumption is made.

Assumption 3: Each mobile robot i is able to find its four

neighbors i++, i+, i-, and i-- in the network, i.e., Ni(t) =
{i++, i+, i-, i--}, ∀i ∈ O, ∀t ≥ t0.

Finally, the cooperative target enclosing control problem are

formally defined as follows.

Problem 1: Given a target located at p0 = [x0 y0]
T

and a radius r, for a group of mobile robot (1) subject to

heterogeneous disturbances generated by the exo-systems (2),

with any initial states [pT

i(t0) θi(t0)]
T ∈ R

3, ∀t0 ≥ 0, find a

dynamic control law in the form of

[vi ωi]
T = ϑ(pi

0,p
i
j , ξi, r), (4)

ξ̇i = ς(pi
0,p

i
j , ξi, r), j ∈ Ni(t), (5)

such that each pi(t) is bounded for all t ≥ t0 and for all

i ∈ O,

lim
t→∞

(pi(t)− p0) = r

[

sin θi(t)
− cos θi(t)

]

, θ̇i > 0, (6)

lim
t→∞

‖pi(t)− pi+(t)‖ = lim
t→∞

‖pi(t)− pi-(t)‖, (7)

where ξi is some internal state to be designed, ϑ(·) and ς(·)
are sufficiently smooth functions, and i+ and i- denote the two

nearest neighbors of robot i in the initial counterclockwise and

clockwise radial orders around the target respectively.

The objective (6) defines the target enclosing of each robot,

while the objective (7) defines the evenly spaced formation of

all robots. Note that (7) can be achieved if all separation angles

ϕ(i+)i between each robot i and its neighbour i+ approach the

same value.

Remark 2.1: Under Assumption 1, the input disturbance

signal [ρi ̺i]
T can be written in the form of

ρi(t) = αi +
∑ni

j=1 κij sin(γijt+ ψij), (8)

̺i(t) = α′
i +

∑mi

j=1 κ
′
ij sin(γ

′
ijt+ ψ′

ij), (9)

with unknown amplitudes αi, α
′
i, κij , and κ′ij , and unknown

phases ψij , and ψ′
ij . The disturbance signals (8)–(9) are the

linear combination of a finite number of step signals and

sinusoidal signals. Since a periodic signal can be represented

as a sum of sinusoids by Fourier series expansion, a large

class of persistent disturbances can be described by (8) and

(9). Note that this theoretical framework accommodates the

periodical disturbances, which may be suitable for the mobile

robots in some practical scenarios, since the input disturbances

in the velocity channels of mobile robots are often caused

by the systematic errors. For instance, the disturbances in the

spinning wheels of a differential drive wheeled mobile robot

are often caused by some systematic malfunction of engine or

low-level actuator, such as motor offset, friction of mechanical

gear, and wear and tear of wheels. Moreover, under Assump-

tion 1, the disturbance signals are more general than that

considered in [35–38]. For instance, the concerned disturbance

signals include the harmonic and constant disturbance signals

in [37, 38] as a special case.

Remark 2.2: The cooperative target enclosing can also be

achieved by the leader-follower formation tracking control,

for instance [3, 29, 36, 41], by setting a virtual leader with

state [xr(t) yr(t) θr(t)]
T on an orbit trajectory around the

given target with radius r and linear velocity v0. However,

this strategy requires the mobile robot to obtain the actual or

relative heading angle measurements with respect to the leader

robot and its neighbors, i.e., θi and θr, or θr−θi. While these

measurements are not needed in this paper, which makes the

implementation much easier in practice. In fact, encircling the

target only requires [di0 βi
0]

T, i.e., the relative distance and

bearing angles, to converge to [r − π
2 ]

T, and forming the evenly

spaced formation only needs each septation angle ϕ(i+)i in

each △(i+)0i to converge to the same value. Thus, the relative

heading angles have no direct contribute to both objectives.

III. MAIN RESULTS

In this section, we first reformulate objectives (6)–(7) to

facilitate the control law design and propose a dynamic control

law to solve the cooperative target enclosing control problem.

Then, the main theorem with the proof is presented. Finally,

some discussions along with two corollaries are given.

A. Control law design

First, we define a tracking error ei := [exi eyi]
T as

ei = R(θi)(p0 − pi + r

[

sin θi
− cos θi

]

) = pi
0 −

[

0
r

]

. (10)

Then, we have the following error dynamics:

ėi = (ωi + ̺i)Aei − (vi − ωir + ρi − ̺ir)

[

1
0

]

, (11)

where A =

[

0 1
−1 0

]

.
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Thus, to make all mobile robots orbit around the target

counterclockwise with the given radius r, i.e., to achieve (6),

it suffices to show that

lim
t→∞

ei(t) = 0. (12)

Next, the upper right-hand time derivative of the separation

angle ϕ(i+)i is

D+ϕ(i+)i =
(vi+ + ρi+) sinβ

i+
0

di+0
− (vi + ρi) sinβ

i
0

di0
, i ∈ O,

(13)

where βi
0 ∈ [−π, π) is the bearing angle of robot i with respect

to the target satisfying di0[cosβ
i
0 sinβi

0]
T = pi

0; see Fig. 1(a).

Thus, to make all mobile robots maintain evenly spaced along

the common circle, i.e., to achieve (7), it suffices to show that

lim
t→∞

ϕ(i+)i(t) =
2π

N
, ∀i ∈ O. (14)

In what follows, we design a dynmaic control law in the

form of (4)–(5), such that the objectives (12) and (14) are

achieved. To this end, we introduce the internal states as

êi := [êxi êyi]
T ∈ R

2, ẑi ∈ R
mi , ûi ∈ R

mi , (15)

and define the following internal state:

ρ̂i = bT

iẑi, ˆ̺i = cT

iẑi, σ̂i = bT

iûi. (16)

The initial states [êT

i(t0) ẑT

i (t0) ûT

i(t0)]
T can be arbitrarily

chosen in R
2 × R

mi × R
mi .

We then propose a dynamic control law as follows.

vi = v0 − ρ̂i − σ̂i + kv tanh(ϕ(i+)i − ϕi(i-)), (17)

ωi =
vi + ρ̂i

r
− ˆ̺i −

kω êxi

r
√

1 + ê2xi
, (18)

˙̂ei = (ωi + ˆ̺i)Aêi +Ki(ei − êi) +
kω(êxi − exi)
√

1 + ê2xi

[

1
0

]

,

(19)

˙̂zi = Siẑi − P−1
i ([bi ci]

[

1
−r

]

(êxi − 2exi)

− ci(ei − êi)
TAei), (20)

˙̂ui = Siûi −
P−1
i bi

r
(2 tanh(ϕ(i+)i − ϕi(i-))

− tanh(ϕ(i++)i − 2ϕ(i+)i)− tanh(2ϕi(i-) − ϕi(i--))),
(21)

where v0 is a given positive constant, parameters kv and kω
are any positive constants, Ki ∈ R

2×2 is any matrix satisfying

Ki + KT

i > 0, and Pi ∈ R
m×m is a positive definite matrix

satisfying:

PiSi + ST

iPi ≤ 0. (22)

Note that there exists a matrix Pi > 0 satisfying inequality

(22) if and only if Assumption 1 is satisfied; see [44]. As

ei can be obtained by measuring pi
0 according to (10) and

ϕji can be calculated with pi
0(t) and pi

j(t), j ∈ Ni, in the

triangle △j0i, the proposed control law (17)–(21) is in the

form of (4)–(5). In particular, controller ωi in (18) is designed

for achieving the convergence to circular motion around the

target. Controller vi in (17) makes the robots simultaneously

converge to the evenly spaced formation and function tanh(·)
is set so as to limit the bound of the error ϕ(i+)i − ϕi(i-) by

kv. While (19)–(21) are designed as the update law for the

internal states, so as to handle the uncertainties brought by

the input disturbances.

B. Main theorem

The main result of this paper is presented as follows.

Theorem 1: Under Assumptions 1–3, the cooperative target

enclosing control problem defined in Problem 1 is solved

by control law (17)–(21), if each pair (bT

i, Si), i ∈ O, is

observable.

Proof: The proof of Theorem 1 is established with the

so-called set reduction theorem [45, Proposition 14], and is

proceeded in the following two steps.

Denote e = [eT

1, e
T

1+, ..., e
T

1-]
T ∈ R

2N , ê = [êT

1, ê
T

1+,

..., êT

1-]
T ∈ R

2N , and ϕ = [ϕ(1+)1, ϕ(1++)(1+), ..., ϕ(1-)1]
T ∈

[−π, π)N . Note that ϕ is determined by e and is a function

of e.

In the first step, we prove that all mobile robots converge to

orbiting along the common circle with the center p0 and the

radius r. That is, the following proposition can be obtained.

Proposition 1: Consider N systems (11) under Assump-

tions 1–3. Control law (17)–(21) guarantees that the trajectory

[eT(t) êT(t)]T is globally uniformly bounded, and that if each

pair (bT

i, Si), i ∈ O, is observable, set Γ1 defined as

Γ1 = {[eT êT]T ∈ R
2N × R

2N |ê = e = 0}, (23)

is globally asymptotically stable relative to R
2N × R

2N .

In the second step, we show that the mobile robots orbiting

along the prescribed common circle, converge to an evenly

spaced formation, i.e., the following proposition is obtained.

Proposition 2: Consider N systems (13) under Assump-

tions 1–3. Control law (17)–(21) guarantees that set Γ2 defined

as

Γ2 = {[eT êT]T ∈ Γ1 : ϕ(e) =
2π

N
1}, (24)

is globally asymptotically stable relative to Γ1.

Finally, with Propositions 1 and 2, Theorem 1 can be proved

by directly using the so-called set reduction theorem [45,

Proposition 14]. The detailed proofs of Propositions 1 and

2 are presented below.

1) Proof of Proposition 1: To prove Proposition 1, the

following lemma is needed.

Lemma 1: Consider a linear marginally stable system ζ̇ =
Qζ, η = qTζ, with state ζ ∈ R

m, constant vector q ∈ R
m,

and matrix Q ∈ R
m×m. If the pair (qT, Q) is observable and

the initial state satisfies Qζ(t0) 6= 0, then lim
t→∞

η(t) does not

exist.

Proof: We use a contradiction argument to prove Lemma

1. Suppose that there exists an η0 such that lim
t→∞

η(t) =

η0. Since the concerned system is marginally stable,

then η(t) ≡ η0. Next, we write
[

η; η̇; ...; η(n−1)
]

=
[

qT; qTQ; ...; qTQn−1
]

ζ(t) = [η0; 0; ...; 0]. As (b′, S) is ob-

servable, then rank(
[

qT; qTQ; ...; qTQn−1
]

) = m, which im-

plies that equation
[

qT; qTQ; ...; qTQn−1
]

ζ(t) = [η0; 0; ...; 0]
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has one unique solution ζ. Thus, we have ζ(t) ≡ ζ. In this

case, ζ̇(t) = Qζ(t) = Qζ = 0 and then Qζ(t0) = 0, which

contradicts to Qζ(t0) 6= 0. Hence, lim
t→∞

η(t) does not exist.

Then, the proof of Proposition 1 is given as follows.

Define ẽi = [ẽxi ẽ
y
i ]

T, z̃i, ρ̃i and ˜̺i as

ẽi = êi − ei, z̃i = ẑi − zi, ρ̃i = bT

iz̃i, ˜̺i = cT

iz̃i, (25)

and we have ρ̃i = ρ̂i − ρi and ˜̺i = ˆ̺i − ̺i. Then, the

augmented closed-loop system consisting of (11), and control

law (17)–(20) is written as

ėi = (ωi + ̺i)Aei − (˜̺ir − ρ̃i +
kω(ẽxi + exi)
√

1 + ê2xi
)

[

1
0

]

, (26)

˙̃ei = (ωi + ˆ̺i)Aẽi + ˜̺iAei −Kiẽi

+ (˜̺ir − ρ̃i +
kωexi

√

1 + ê2xi
)

[

1
0

]

, (27)

˙̃zi = Siz̃i − P−1
i (ciẽ

T

iAei + [bi ci]

[

1
−r

]

(ẽxi − exi)). (28)

Consider a positive definite and decrescent Lyapunov func-

tion candidate Vi(t, ei, ẽi, z̃i) : R≥0×R
2×R

2×R
mi → R as

Vi(t, ei, ẽi, z̃i) = 1
2e

T

iei +
1
2 ẽ

T

iẽi +
1
2 z̃

T

iP z̃i. Taking its time

derivative along the trajectories of system (26)–(28) leads to

V̇i =
ωi + ̺i

2
eT

i(A+AT)ei − exi(˜̺ir − ρ̃i) + ˜̺iẽ
T

iAei

+
ωi + ̺i

2
ẽT

i(A+AT)ẽi −
1

2
ẽT

i(Ki +KT

i )ẽi

+
kωexiẽxi
√

1 + ê2xi
+ ẽxi(˜̺ir − ρ̃i)− (˜̺ir − ρ̃i)(ẽxi − exi)

+
1

2
z̃T

i(PiSi + ST

iPi)z̃i − ˜̺iẽ
T

iAei −
kω(exiẽxi + e2xi)

√

1 + ê2xi

≤ − kωe
2
xi

√

1 + ê2xi
− 1

2
ẽT

i(Ki +KT

i )ẽi ≤ 0, (29)

since A + AT = 0, PiSi + ST

iPi ≤ 0, and Ki + KT

i > 0.

It follows from (29) that the closed-loop system (26)–(28) is

globally uniformly stable and ei, ẽi and z̃i are bounded in

t. Since Vi(t, ei, ẽi, z̃i) is nonincreasing in t and bounded,

lim
t→∞

∫ t

t0
V̇i(τ, ei, ẽi, z̃i)dτ exists and is finite. By (26)–(28),

ėi, ˙̃ei, and ˙̃zi are also bounded in t. Note V̇i(t, ei, ẽi, z̃i) =
1
2 z̃

T

i(PiSi+S
T

iPi)z̃i− kωe2xi√
1+ê2

xi

− 1
2 ẽ

T

i(Ki+K
T

i )ẽi in (29), it fol-

lows that V̈i(t, ei, ẽi, z̃i) is bounded in t. Then, V̇i(t, ei, ẽi, z̃i)
is uniformly continuous in t. Using Barbalat’s Lemma, we

obtain

lim
t→∞

exi(t) = 0, lim
t→∞

ẽi(t) = 0. (30)

Next, the extended Barbalat’s Lemma [46, Lemma A.14] is

used to prove lim
t→∞

eyi(t) = 0.

According to (19), the time derivative of êxi is written as
˙̂exi = hi1 + hi2 with hi1 = (ωi + ˆ̺i)eyi =

v̄i
r
eyi and hi2 =

(ωi + ˆ̺i)ẽyi − kω ẽxi − [1 0]Kiẽi, where

v̄i = v0 − σ̂i + kv tanh(ϕ(i+)i − ϕi(i-)). (31)

Using (30), we have lim
t→∞

hi2(t) = 0. Since ei is bounded, it

follows from (26) that ḣ1(t) exists and is also bounded, which

implies hi1(t) is uniformly continuous in t. Using the extended

Barbalat’s Lemma [46, Lemma A.14], we obtain lim
t→∞

hi1(t) =

0. Then, it follows that

lim
t→∞

eyi(t) = 0, (32)

provided that v̄i(t) in (31) does not converge to 0 as t→ ∞.

Now, we prove that v̄i(t) does not converge to 0 by

contradiction. Suppose that v̄i(t) → 0 as t → ∞. Denote

û = [ûT

1, û
T

1+, ..., û
T

1-]
T and σ̂ = [σ̂1, σ̂1+, ..., σ̂1-]

T. As v̄i(t)
converges to 0, û(t) converges to set Û defined as

Û = {û ∈ R

∑N
j=1

mi |v̄i(ûi) = 0, i ∈ O}. (33)

Moreover, define

∆i = ϕ(i+)i − ϕi(i-), (34)

and denote ∆ = [∆1,∆1+, ...,∆1-]
T. It follows from (31) that

when û ∈ Û ,

kv tanh∆i = −(v0 − σ̂i). (35)

Then, it follows from (21) and (35) that for all û ∈ Û , ˙̂u
satisfies

˙̂u = Sû− 1

r
P−1BL(∆)σ̂, (36)

where S = diag{S1, S1+, ..., S1-}, P = diag{P1, P1+, ...,

P1-}, B = diag{b1, b1+, ..., b1-}. L(∆) denotes the Laplacian

matrix of a graph which is always a cycle.

Next, consider a Lyapunov function candidate V (û) =
1
2 û

TP û and take its the upper right-hand time derivative along

the trajectory of system (36) yields

D+V (û) =
1

2
ûT(PS + STP )û− 1

2r
σ̂T(L(∆) + L(∆)T)σ̂

≤ − 1

2r
σ̂T(L(∆) + L(∆)T)σ̂

= −1

r
σ̂TL(∆)σ̂ ≤ 0, (37)

where it is noted that L(∆) is always positive semi-definite,

and PS + STP ≤ 0 by (22). Define set U = {û ∈
Û |D+V (û) = 0}. It can be concluded from the definition

of L(∆) that

U = {û ∈ Û |bT

iûi = σ̂i = ˆ̟ , i ∈ O}, (38)

with some variable ˆ̟ , and that for all û ∈ Û , û converges to

set U by the non-smooth LaSalle’s invariance principle [47,

Theorem 3.2, Chapter VII].

Since ∆1 = ∆1+ = ... = ∆1- by (35), and ∆1 + ∆1+ +
...+∆1- ≡ 0 by (34), then ∆i = 0, ∀i ∈ O is obtained. Thus,

we have U = {û ∈ Û |bT

iûi = ˆ̟ , i ∈ O}, and v̄i(ûi) =
v0 − ˆ̟ = 0, ∀û ∈ U . Using [48, Theorem 2.10], it follows

from (35) and (36) that

˙̂ui = Siûi, σ̂i = bT

iûi, ∀û ∈ U. (39)

By Lemma 1, σ̂i does not converge to a constant, i.e., ˆ̟ is not

a constant. However, v̄i(ûi) = v0 − ˆ̟ = 0 leads to v0 = ˆ̟ ,

which contradicts the fact that v0 is a positive constant. Thus,

U = ∅ holds. Since for all û ∈ Û , û converges to set U , then
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Û = ∅ and v̄i does not converge to 0 as t→ ∞.

Hence, the closed-loop system (26)–(28) is globally asymp-

totically stable, that is, Γ1 is globally asymptotically stable

relative to R
2N × R

2N . The proof is thus completed.

2) Proof of Proposition 2: When [eT êT]T ∈ Γ1, i.e., e =
ê = 0, we have di0 = r and βi

0 = π
2 , ∀i ∈ O. Then, with

(17), system (13) becomes

D+ϕ(i+)i =
−σ̃i+ + kv tanh∆i+

r
− −σ̃i + kv tanh∆i

r
,

(40)

where ∆i is defined in (34) and σ̃i is defined as

σ̃i = bT

iũi, ũi = ûi + z̃i. (41)

It follows from (28) that ˙̃zi = Siz̃i when [eT êT]T ∈ Γ1. Then,

using (21) and (40), the upper right-hand time derivative of

∆i and the time derivative of ũi are expressed as

D+∆i = −1

r
(kv(2 tanh∆i − tanh∆i+ − tanh∆i-)

+ (2σ̃i − σ̃i+ − σ̃i-)), (42)

˙̃ui = Siũi −
P−1
i bi

r
(2 tanh∆i − tanh∆i+ − tanh∆i-),

(43)

respectively. Denote ũ = [ũT

1, ũ
T

1+, ..., ũ
T

1-]
T, σ̃ =

[σ̃1, σ̃1+, ..., σ̃1-]
T, and T (∆) = [tanh∆1, tanh∆1+, ...,

tanh∆1-]
T. Then, N systems in the form of (42)–(43) are

rewritten in the following compact form:

D+
∆ = −kv

r
L(∆)T (∆) +

1

r
L(∆)σ̃, (44)

˙̃u = Sũ− 1

r
P−1BL(∆)T (∆). (45)

Next, consider a Lyapunov function candidate V (∆, ũ) :

R
N × R

∑N
j=1

mi → R as V (∆, ũ) = 1
2

∑N

i=1 log(cosh∆i) +
1
2 ũ

TP ũ. Taking its upper right-hand time derivative along the

trajectories of system (44)–(45) yields

D+V = −1

r
(kv

N
∑

i=1

(tanh∆i+ − tanh∆i)− T T(∆)L(∆)σ̃

+ σ̃TL(∆)T (∆)) + ũT(PS + STP )ũ

≤ −kv
r

N
∑

i=1

(tanh∆i+ − tanh∆i) ≤ 0, (46)

where it is noted that PS + STP ≤ 0 and L(∆) is always

positive semi-definite. Define set χ = {[∆T ũT]T |V̇ (∆, ũ) =
0}. Since V̇ (∆, ũ) = 0 implies ∆1 = ∆1+ = ... = ∆1-,

and ∆1 + ∆1+ + ... + ∆1- ≡ 0 holds by (34), we have

χ = {[∆T ũT]T|∆ = 0}. As ∆ = 0 holds, ∆̇ = 0 yields

σ̃ = ˜̟ 1 with some variable ˜̟ . Thus, then χ = {[∆T ũT]T

|∆ = 0, BTũ = ˜̟ 1}, and by the non-smooth LaSalle

Invariance Principle in [47, Theorem 3.2, Chapter VII], ∆(t)
converges to 0, i.e., ϕ(i+)i − ϕi(i-), ∀i ∈ O, converges to 0
asymptotically as t → ∞. It follows from the definition of

ϕ(i+)i that
∑N

i=1 ϕ(i+)i ≡ 2π, and thus

lim
t→∞

ϕ(i+)i(t) =
2π

N
, ∀i ∈ O. (47)

Hence, Γ2 is globally asymptotically stable relative to Γ1. The

proof is thus completed.

For the closed-loop system consisting of N nonlinear

systems (11), (13), and control laws (17)–(21), only the

asymptotical stability rather than the exponential one can be

derived, and the convergence rate of the system states cannot

be determined by kv , kω, and Ki. This fact can be observed

from (29), where it is shown that the decreasing rate of the

Lyapunov function Vi is not influenced by the concerned states

eyi and z̃i. Nevertheless, it follows from (29) and (46) that

larger values of kv , kω, and the eigenvalues of Ki +KT

i lead

to faster decrease of the corresponding Lyapunov functions,

which may result in a faster convergence rate.

Remark 3.1: In [39], one single mobile robot with input

disturbances was considered, and the proposed control law for

encircling the target, utilized both control channels vi and ωi.

While for multiple mobile robots, an additional objective for

evenly-spaced formation has to be achieved with the same

control channels, which makes the proof of Theorem 1 more

challenging than that in [39]. Similar to [39], the internal states

ρ̂i and ˆ̺i are introduced to handle the input disturbances,

in the control law for encircling the target. However, it can

be observed from (13) and (17) that introducing ρ̂i leads to

another signal ρ̂i − ρi. As ρ̂i − ρi is also unknown and may

not vanish, we design another internal state σ̂i as well as its

update law (21) to handle it. Once vi is enhanced with σ̂i,

the stability analysis for encircling the target, i.e., Proposition

1, becomes more complicated. In particular, in order to prove

(32), more effort has been paid to guarantee that v̄i in (31)

does not converge to zero. If σ̂i were not introduced as in [39],

v̄i would equal v0, which directly leads to (32) but makes it

impossible to achieve evenly spaced formation. Besides, even

with σ̂i and its update law (21), system (13) will not evolve

into (40) and Proposition 2 as well as Theorem 1 will no

longer hold if (32) cannot be proved in Proposition 1.

C. Discussions

1) Disturbance signals: As explained in Remark 2.1, the

disturbance described by the outputs of the exo-systems (2)

under Assumption 1, are the linear combinations of a finite

number of sinusoidal signals. Assumption 1 is a more relaxed

assumption than that used in [35–38]. In [35, 36], a class of

input disturbances described by the outputs of the exo-systems

(2) satisfying the following assumption was considered.

Assumption 4: [35, 36] The matrices bib
T

iSi + ST

ibib
T

i and

cic
T

iSi + ST

icic
T

i, i ∈ O, are negative semi-definite.

As given in Remark 1 of [36], the input disturbance signal

[ρi ̺i]
T will not diverge under Assumption 4. In [37, 38], a

class of input disturbances consisting of harmonic and constant

signals was considered, which implies that the exo-systems (2)

satisfy the following assumption:

Assumption 5: [37, 38] The matrices Si, i ∈ O, are skew-

symmetric, i.e., Si + ST

i = 0.

Since many signals cannot be represented by linear com-

binations of a finite number of sinusoidal signals, the scope

of the disturbance signals is limited by Assumptions 4 and 5.

See the following example.
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Example 1: Consider a disturbance signal [ρi(t) ̺i(t)]
T =

[
√
2
6 + 1

3 sin(
3
5 t+

π
4 )

√
2
6 + 1

15 sin(
3
5 t+

π
4 )− 1

5 cos(
3
5 t+

π
4 )]

T

which can be represented as the output of the exo-system (2)

with Si =





0.2 −1 0
0.4 −0.2 0
0 0 0



, bi = [1 0 1]
T
, ci = [0 1 1]

T
,

and zi(0) = [
√
2
6 −

√
2

15

√
2
6 ]T, which dissatisfies Assumptions

4 and 5, but satisfies Assumptions 1.

As in [35–39], Si, bi, and ci in the exo-system (2) are

assumed to be known. For the concerned input disturbances

(8)–(9), Si, bi, and ci can be determined by the frequencies

γij and γ′ij . This theoretical framework may be suitable for

the mobile robots subject to the input disturbances which

are caused by the systematic errors. As for the systematic

errors, these frequencies can be measured or estimated without

knowing their exact values of magnitudes in some practical

scenarios. The case that the system matrix Si is unknown will

lead to a much more complicated problem which needs further

investigation and is our future research focus.

For the case where the dynamics of the disturbances are

unknown and upper bounds on the magnitudes of the dis-

turbances are known, sliding mode control technique can be

used. However, this strategy usually leads to chattering. For

instance, in [40] where consensus of system (1) was studied,

the proposed controller leads to chattering of heading angles.

Our proposed control law provide an option for the case where

the frequency information rather than the upper bounds on the

magnitudes of the disturbances is available, and where the

chattering is not physically allowed.

2) Persistently exciting condition: Under Assumption 1, if

the pair (bT

i, Si) is observable and the unknown initial state

satisfies Sizi(t0) 6= 0, then lim
t→∞

ρi(t) does not exist. Since ρi

is in the form of (8), there exists at least one [κij γij ]
T 6= 0.

As κij sin(γijt+ψij) satisfies the classic persistently exciting

condition [49], the disturbance ρi(t) is a persistent exciting.

The condition that each pair (bT

i, Si), i ∈ O, is observable, is

a sufficient condition to solve Problem 1, and it is only used

to ensure that σ̂i(t) does not converge to a constant. If σ̂i(t)
converges to a constant ˆ̟ i, then the value of ˆ̟ i cannot be

determined and may result in v̄i(t) → 0.

However, in the case where lim
t→∞

σ̂i(t) does not converge to

v0, the proposed control laws are also effective even when

the pair (bT

i, Si), i ∈ O, is not observable. Thus, as the

constant ˆ̟ does not equal v0 in most cases, the condition that

(bT

i, Si), i ∈ O, is observable, is conservative. In practice, if

lim
t→∞

σ̂i(t) = v0 happens, the robots may simply adjust the

value of v0 slightly to avoid σ̂i(t) → v0. In the case that

bT

iSi = 0
T, v0 can be designed as a function of which the

limit does not exist as t→ ∞. We may modify v0, and obtain

the following corollary.

Corollary 1: In the case that bT

iSi = 0
T, the cooperative

target enclosing control problem, i.e., Problem 1 can be solved

by control law (17)–(21) under Assumptions 1–3 with v0
designed as v0 = a0 + b0(t) where lim

t→∞
b0(t) does not exist

and a0 is a positive constant satisfying a0 >> max b0(t).
Sketch of proof: The proof can be proceeded as that of

Theorem 1 as well as Propositions 1 and 2. The only difference

is that σ̂i converge to a constant ˆ̟ by (39) and bT

iSi = 0
T.

Then, as v0 = ˆ̟ , the design of v0 in Corollary 1 guarantees

that v0 is not a constant, which leads to the contradiction.

3) Neighbouring robots: To achieve the evenly spaced for-

mation of the robots, the network topology was often assumed

to be a cycle, for instance, [14, 16, 19, 21, 26, 50, 51]. That

is, each robot has two neighbors, robots i+ and i-. Note that

those works does not include any disturbances, while the input

disturbances are considered in this paper and Assumption 3 is

needed when handling these disturbances. If there were no

input disturbances, dynamics (42) would reduce to

D+∆i = −1

r
(kv(2 tanh∆i − tanh∆i+ − tanh∆i-). (48)

Then, only using controller (17) without ρ̂i and σ̂i, i.e.,

vi = v0 + kv tanh(ϕ(i+)i − ϕi(i-)), (49)

can make N systems in the form of (48) globally asymptoti-

cally stable. In this case, each robot only needs two neighbors,

robots i+ and i-, to implement (49), which consists with

the assumption used in the aforementioned existing works.

However, once the input disturbances are considered, there

appears the disturbance (2σ̃i− σ̃i+− σ̃i-) in (48), that is, (48)

becomes (42). To handle this disturbance, we develop (21)

which has to use the measurements ϕ(i++)i and ϕi(i--). Thus,

in addition to robots i+ and i-, robot i needs to have another

two neighbors, robots i++ and i--.

4) Collision: To avoid collision among mobile robots in

the same altitude, we can use a switched law similar to that

in [16] by incorporating the proposed control law with the

behavior-based algorithm implemented on the experiment in

[16]. That is, when two robots are going to collide and satisfy a

certain condition in the algorithm, they switch to the controller

for avoiding collision used in [16]. Then, they switch back to

our proposed controller once they do not tend to collide. Note

that when [eT êT]T is in a small neighborhood of Γ2, i.e., every

ϕ(i+)i remains close to 2π
N

, the collision will not happen, since

collision only occurs when ϕ(i+)i turns zero.

IV. SIMULATION

In this section, we consider five mobile robots (1) with the

initial states p1(0) = [−3 3]T, p2(0) = [−4 2]T, p3(0) =
[−4 − 4]T, p4(0) = [4 − 4]T, p5(0) = [3 3]T, p6(0) = [0 4]T,

θ1(0) = π
4 , θ2(0) = −π

2 , θ3(0) = 2π
3 , θ4(0) = π

3 , θ5(0) =
− 2π

3 , and θ6(0) =
π
2 . The position of the target and the radius

are given by p0 = [0 0]T and r = 2 respectively. Give v0 = 2,

and set Ki = diag(20, 20) and the parameters kv = 3 and

kω = 10.

In this example, nonidentical input disturbances of the

multi-robot systems are considered. The disturbance signals

are [ρi(t) ̺i(t)]
T = [

√
2
6 + 1

3 sin(
3(6−i)

10 t + π
4 )

√
2
6 +

1
15 sin(

3(6−i)
10 t + π

4 ) − 1
5 cos(

3(6−i)
10 t + π

4 )]
T, i = 1, 2, ..., 6,

which describe a set of persistent and periodical disturbances

caused by some systematic errors of the cruise control systems

in the mobile robots. The concerned disturbance signals are in

the form of (8)–(9) and can be viewed as the outputs of the
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Fig. 3. The relative distances ‖pi(t)−pi+(t)‖, i = 1, .., 6, during 0–150s.

exogenous systems (2) with Si = (6−i)×





0.1 −0.5 0
0.2 −0.1 0
0 0 0



,

bi = [1 0 1]T, ci = [0 1 1]T, and initial states zi(0) =

[
√
i

6 −
√
i

15

√
i

6 ]T. It is verified that Assumption 1 is satisfied.

Besides, each pair (bT

i , Si), i = 1, .., 5, is observable. By (22),

we set Pi =





2 −1 0
−1 5 0
0 0 1



 , i = 1, 2, ..., 6.

Apply the proposed control law (17)–(21) to each robot

(1) with the initial internal states êi(0) = 0, ẑi(0) = 0 and

ûi(0) = 0, i = 1, .., 6. The relative distances between each

robot i and the target during 0–150s are presented in Fig.

2, which shows that robots converge to the common circle

with the given center p0 and radius r. The distances between

each robot i and its neighbor i+ during 0–150s are shown in

Fig. 3, which illustrates that the mobile robots converge to

the evenly spaced formations. The positions of all robots at

t = {0, 5, 10, 15, 30, 60, 90, 120, 150}s are shown in Fig. 7,

which shows the cooperative target enclosing are eventually

achieved. The control inputs, i.e., the linear velocity and

angular velocity of each robot i are shown in Figs. 4 and

5, respectively. The control inputs change according to the

proposed controller (17)–(18) and eventually vary properly so

as to achieve the rejection to the input disturbances. Besides,

the separation angles ϕ(i+)i during 0–150s are presented in

Fig. 6. Note that the neighbours of the robots may dynamic

switch depending on the real-time counterclockwise radial

order around the target. As shown in Fig. 6, no separation

angles ϕ(i+)i, i = 1, .., 6, have ever turned zero, which

indicates that no switch of neighbors happens in this example.

Furthermore, it can be observed from Figs. 3 and 6 that no

collision among the robots has happened in this example,

since neither ‖pi(t)−pi+(t)‖ nor ϕ(i+)i, i = 1, .., 6, has ever

reached zero.

As in [35, 36], we include the case S6 = 0 which satisfies
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both Assumptions 1 and 4. In this case, the disturbances are

constant. It is shown that even if the pair (bT

6, S6) is not ob-

servable, the cooperative target enclosing are still achieved. As

discussed above, this condition is a conservative assumption

only used to exclude lim
t→∞

σ̂i(t) = v0, so as to guarantee the

solvability of Problem 1. In most cases, control law (17)–(21)

are still effective as generally σ̂i(t) does not converge to v0.

V. CONCLUSIONS

In this paper, we have proposed a dynamic control law,

such that a group of unicycle-type mobile robots enclose

and orbit around a given target while maintaining evenly

spaced along the circle, in the presence of heterogeneous

input disturbances. The network topology is set in a cyclic

pursuit manner. The proposed control law is based on relative

displacement measurements, and guarantees the global asymp-

totical stability of the closed-loop multi-robot systems under

certain assumptions. For the future work, we will consider

the disturbances generated from an exo-system with unknown

system matrix, investigate the rejection to the non-periodical

disturbances caused by some nondeterministic errors of the

robots, and study the moving-target enclosing control problem

of mobile robots with input disturbances.
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Fig. 7. The positions of the target and all mobile robots at t =
{0, 5, 10, 15, 30, 60, 90, 120, 150}s.
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