
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 1
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Abstract—This paper considers a leader-follower formation
control problem of nonholonomic vehicles of unicycle type subject
to velocity constraints. The velocity constraints of each vehicle
are described by saturated angular velocity and bounded linear
velocity lying between two positive constants. The communication
topology of the networked multi-vehicle system is modeled by
a directed graph. The designed control law is distributed in
the sense that the controller of each follower vehicle only uses
its own information and the information of its neighboring
vehicles. It is shown that with the proposed control law, the
leader-follower formation can be achieved without using absolute
position measurements while the velocity constraints are satisfied.
Finally, the simulation results of an example verify effectiveness
of the proposed control law.

Index Terms—Distributed formation control, nonholonomic
vehicle, velocity constraint.

I. INTRODUCTION

RECENT years have seen increased development in dis-

tributed control of multi-agent systems, see [1]–[6] and

references therein. In particular, many researchers have shown

great interest in formation control of vehicles [6], [7]. The ob-

jective of formation control of vehicles is to make a team of ve-

hicles move towards, and maintain a desired geometric pattern

while maintaining a featured motion. In practice, vehicles are

subject to the bounded maximum linear velocity due to thrust

limitations and the saturated angular velocity due to steering

rate limits. Besides, many vehicles are further subject to the

constraint of the positive-minimum linear velocity due to stall

conditions. In this case, vehicles can neither move backward

directly nor slow down the linear velocity lower than a certain

positive value. In fact, many ground vehicles and most aerial

planes are subject to such physical velocity constraint, e.g., the

fixed-wing unmanned aerial vehicle (UAV) [8]. Thus, it is of

great theoretical and practical significance to investigate and

develop distributed control approaches to vehicle formations

subject to all aforementioned velocity constraints.

The leader-follower formation control problem refers to

forcing follower vehicles to follow the leader’s motion while

maintaining a desired geometric structure with respect to the
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leader. The special case with only one follower can be referred

to as trajectory tracking control problem, which has been

extensively studied in the literature, see [9]–[11]. To address

all aforementioned velocity constraints in this special case,

in [8] a controller was designed for a small fixed-wing UAV

via selection from a feasible set which was defined by a

constrained control Lyapunov function method. The authors in

[12] considered the additive uncertainty and proposed a robust

controller in terms of input-to-state stability. Unfortunately, the

techniques from these works cannot be directly extended to

formation control of multiple vehicles.

Nevertheless, many works studied the distributed formation

control problem for multiple vehicles. In [13], the graph theory

was used to develop a framework of modeling a formation by

assuming a tree structure. Following this research, in [14],

a nonlinear gain was employed to estimate the effect of the

leader on formation. In [15], formation stability was analyzed

by an approach based on control Lyapunov function method. In

[16], the authors proposed a wiggling controller without using

absolute position measurements, such that the stabilization of

vehicle formation was achieved. In [17], collision avoidance

and limited sensing range of vehicles were considered. In [18],

a robust second-order sliding mode controller was proposed

for the case where each follower knows the leader. In [19], to

improve the convergence performance of formation tracking

errors, the authors proposed a receding-horizon controller. All

these works did not take into account any velocity constraints.

Recently, velocity saturation of vehicles was considered in [20]

and [21], and acceleration saturation was considered in [22].

However, the aforementioned works cannot be directly

applied to the vehicles with positive-minimum linear velocity

constraint. Several works did consider this constraint in the

formation control problem in different cases. In [23], the au-

thors studied formation control of unicycles with constrained

line-of-sight angles. In [24], the case where one follower was

required to stay in an arc of the circle centered in the frame

of the leader was studied. In [25], a decentralized controller

was proposed for the case where the leader maintains a

uniform linear motion. Later in [26], the authors addressed the

navigation problem without considering geometric formation.

More recently, the authors in [27] and [28] used the small-gain

method to design distributed controllers for the leader-follower

formation, while the positive-minimum linear velocity con-

straint can be satisfied. The proposed controllers in [27] and

[28] were based on static and time-varying relative position

sensing digraphs respectively. They both additionally required

all followers to have access to the real-time information of the

leader through communication, including its heading angle,

angular velocity, linear velocity and linear acceleration.
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In this paper, a novel distributed control law is developed for

leader-follower formation of multiple nonholonomic vehicles

subject to velocity constraints. From a distributed point of

view, all vehicles are identical and anonymous. Each follower

cannot identify the leader in general, and only has access to

the local information and the information of its neighbors in a

network of which the topology is modeled by a directed graph

[1]. A dynamic control law is proposed, in which a distributed

observer is developed such that the information associated with

the leader can be estimated by each follower, and a velocity

controller is designed to satisfy the velocity constraints. Fi-

nally, a technical lemma based on the cascaded system theory

[29] is developed to show the uniform asymptotical stability

of the closed-loop system.

The main features of the proposed distributed formation

control law include: (i) bounded functions are appropriately

used such that the velocity constraints of each vehicle as

described in [8] can always be satisfied; (ii) compared with

[27] and [28], the constraint of angular velocity is additionally

taken into account and any real-time information of the leader

vehicle is not required to be known to all followers.

The rest of this paper is organized as follows. Section II

presents the problem formulation and a technical lemma. In

Section III, a distributed formation control law is proposed

and stability analysis of the closed-loop system is presented.

Section IV shows simulation results of an illustrative example,

which is followed by the conclusions in Section V.

Notations and definitions: For a vector x ∈ R
n, the norm

‖ · ‖ is defined as ‖x‖ = ‖x‖2 = (
∑n

j=1 |xi|2)
1

2 .

II. PRELIMINARIES

A. Problem Formulation

Consider a group of N + 1 nonholonomic vehicles of

unicycle type. For i = 0, 1, ..., N , the kinematic model of

vehicle i is described by:

ẋi = vi cos θi,

ẏi = vi sin θi, (1)

θ̇i = ωi,

where [xi yi]
T ∈ R

2 is the Cartesian coordinates of the center

of mass (absolute position) and θi ∈ R is the heading angle

(orientation) in the inertial frame. vi ∈ R and ωi ∈ R are the

linear velocity and angular velocity respectively, which are

regarded as the control inputs. It is noticed that, in practice,

θi and θi+2Kiπ with Ki ∈ Z represent the same orientation.

The following physical velocity constraints are considered:

vi ∈ [vmin, vmax], vmax > vmin > 0, (2)

ωi ∈ [−ωmax, ωmax], ωmax > 0. (3)

In the desired vehicle formation, all vehicles move with

the group reference velocities vr(t) and ωr(t). Note that

vr(t) ∈ [v-r , v+
r ] ⊂ [vmin, vmax] and ωr(t) ∈ [−ω+

r , ω+
r ] ⊂

[−ωmax, ωmax], where v-r , v
+
r , ω

+
r and vmin, vmax, ωmax are

known constants.

The leader-follower formation control problem is considered

in this paper. The group of vehicles contains one uncontrolled

vehicle labeled 0, and it is called leader. The others labeled

i, i = 1, ..., N , are followers. All vehicles are identical and

followers cannot identify the leader. All follower vehicles are

required to follow the leader’s motion while maintaining a

desired geometric structure. The leader which decides the

group reference velocities satisfies the following assumption:

[A1] v0(t) and ω0(t) are bounded, i.e., v0(t) ∈ [v-0 , v+
0 ],

ω0(t) ∈ [ω-

0 , ω+
0], ∀t ≥ 0, where [v-0 , v+

0 ] ⊆ [v-r , v+
r ] and

[ω-

0 , ω+
0] ⊆ [−ω+

r , ω+
r ].

In practice, the linear acceleration of a vehicle is bounded

and thus the following assumption is made as in [27] and [28]:

[A2] v̇0(t) exists and is bounded for all t ≥ 0.

As in [27], the leader is assumed to know its own linear

velocity v0, angular velocity ω0 and linear acceleration v̇0. The

objective of the leader-follower formation control problem is

to design a controller for vehicle i, i = 1, ..., N , such that

[xi(t) yi(t)]
T converges to [x0(t)+ dxi0 y0(t)+ dyi0]

T and θi(t)
converges to θ0(t) + 2Kiπ with Ki ∈ Z, where the constant

vector di0 := [dxi0 dyi0]
T denotes the desired relative position to

the leader. By default, d00 = 0. Each follower vehicle i does

not know di0, but knows the desired relative position to its

neighboring vehicle j, i.e., dij := [dxij dyij ]
T.

The network among vehicles is physically set up by the

onboard sensor and communication device of each vehicle.

Since the absolute positions of vehicles are usually unavailable

[27], [28], the sensor of a vehicle can only measure the relative

positions to its neighboring vehicles in the network. The

communication devices of vehicles provides the information

transmission among vehicles. Each vehicle only has access to

the information of its neighbors in the network. The topology

of this network is described by a directed graph Ḡ as follows.

First, a directed graph G = {O, E} is used to describe the

network among N followers. The digraph G consists of a finite

set of nodes O = {1, ..., N} representing N followers, and a

set of edges E = {(j, i) : j 6= i, i, j ∈ O} containing directed

edges from node j to node i. Next, combining G and node 0
(leader) yields the digraph Ḡ = {Ō, Ē}, where Ō = O ∪ {0},

and Ē includes E and directed edges from node 0 to node i,
i ∈ O. A directed edge (j, i) (j 6= i, j ∈ Ō, i ∈ O) means

that vehicle i can have access to the information of vehicle j.

Node j is a neighbor of node i if (j, i) ∈ Ē , and a set Ni ⊆ Ō
denotes all neighbors of node i. Finally, define aij = 1 if

(j, i) ∈ Ē , otherwise aij = 0. The following assumption is

made on the digraph Ḡ:

[A3] The digraph Ḡ contains a directed spanning tree with

node 0 being the root.

Now, the leader-follower formation control problem consid-

ered in this paper is formally defined as follows:

Definition 2.1: Consider N follower vehicles and a leader

vehicle, and define the formation tracking errors as

exi = x0 − xi + dxi0, eyi = y0 − yi + dyi0, eθi = θ0 − θi. (4)

Given a digraph Ḡ, for all initial states [exi (t0) e
y
i (t0)]

T ∈ R
2

and eθi (t0) ∈ (-2π, 2π), ∀t0 ≥ 0, find a dynamic control law

in the form of

ρ̇i = ̺(xj − xi, yj − yi, θi, ρi, ρj, dij), (5)

[vi ωi]
T
= σ(ρi, θi), j ∈ Ni, i = 1, ..., N, (6)
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such that

lim
t→∞

exi (t) = 0, lim
t→∞

eyi (t) = 0, lim
t→∞

eθi (t) = 0, (7)

where ρi, to be designed later, is an estimate of the information

associated with the leader, dij = [dxij dyij ]
T is the desired

relative position between vehicles i and j, functions ̺(·) and

σ(·) are sufficiently smooth, and σ(·) is properly bounded

subject to (2)-(3).

Remark 2.1: Since eθi (t0) represents the same orientation

as eθi (t0) + 2Kiπ ∈ R with any Ki ∈ Z, (-2π, 2π) covers all

orientations. In fact, the measurement θi from the sensors such

as IMU/compass or gyroscope [30] usually returns a value in

[0, 2π) or (-π, π], which results in eθi ∈ (-2π, 2π).
Remark 2.2: The problem setup does not include collision

avoidance, and vehicles may be assumed to move on different

altitudes such that collision will not happen. Approaches to

avoiding collisions will be investigated in future.

B. A Technical Lemma

Before presenting the main results, a technical lemma is

given. This lemma is motivated by the cascaded system theory

presented in [29] and will be used in the stability analysis of

the closed-loop system.

Consider the following system:

χ̇ = f(χ, γ(t)) + g(χ, ξ, γ(t)), (8)

where χ ∈ R
n is the state, ξ ∈ R

m is an exogenous signal, γ :
R≥0 7→ Γ are time-varying functions and Γ is a compact subset

of Rq . Functions f(χ, γ(t)) and g(χ, ξ, γ(t)) are continuous in

their arguments. f(χ, γ(t)) is locally Lipschitz on χ uniformly

on γ [31], that is, for each compact subset K, K ∈ R
n, there is

some constant c such that ‖f(X, γ̄)−f(Y, γ̄)‖ ≤ c‖X−Y ‖ for

all X, Y ∈ K and all γ̄ ∈ Γ. g(χ, ξ, γ(t)) is locally Lipschitz

on (χ, ξ) uniformly on γ. System (8) can be considered as a

perturbation of the nominal system

χ̇ = f(χ, γ(t)). (9)

As shown later, the closed-loop system consisting of each

follower (1) and the proposed control law can be written in

the form of (8) and the perturbation term g(χ, ξ, γ(t)) results

from the inter-vehicle information exchange.

In particular, the following lemma gives sufficient con-

ditions to guarantee that a uniformly asymptotically stable

nonlinear system (9) remains uniformly asymptotically stable

when it is perturbed by g(χ, ξ, γ(t)) under some conditions.

Lemma 2.1: Let χ = 0 be an equilibrium point for system

(8). If the following conditions [C1]-[C3] are satisfied, system

(8) is globally uniformly asymptotically stable at χ = 0.

[C1] The nominal system (9) is globally uniformly asymp-

totically stable with a Lyapunov function V : R≥0 × R
n 7→

R≥0 such that for all t ≥ 0 and all χ ∈ R
n,

W (χ) ≤ V (t, χ) ≤ W (χ), (10)

∂V (t, χ)

∂t
+

∂V (t, χ)

∂χ
f(χ, γ(t)) ≤ −W (χ), (11)

∥

∥

∥

∥

∂V (t, χ)

∂χ

∥

∥

∥

∥

‖χ‖ ≤ c1V (t, χ), ∀‖χ‖ ≥ ζ, (12)

∥

∥

∥

∥

∂V (t, χ)

∂χ

∥

∥

∥

∥

≤ c2, ∀‖χ‖ ≤ ζ, (13)

where W (χ) and W (χ) are two class K∞ functions, W (χ)
is a positive semi-definite function, and c1 > 0, ζ > 0 and

c2 > 0 are some constants.

[C2] There exists a class KL function ϕ(·) and a class K
function φ(·), such that for all t ≥ t0 ≥ 0 and all ξ(t0) ∈ R

m,

‖ξ(t)‖ ≤ ϕ(‖ξ(t0)‖, t− t0),

∫ ∞

t0

‖ξ(t)‖dt ≤ φ(‖ξ(t0‖). (14)

[C3] The function g(χ, ξ, γ(t)) satisfies that for all χ ∈ R
n

and all ξ ∈ R
m,

‖g(χ, ξ, γ(t))‖ ≤ ‖ξ‖ (Θ1(‖ξ‖) + ‖χ‖Θ2(‖ξ‖)) , (15)

where Θ1, Θ2 : R≥0 7→ R≥0 are continuous functions.

A sketch of the proof is given in Appendix.

For the case where system (9) is uniformly asymptotically

stable in a domain X ⊂ R
n containing χ = 0 and ξ(t) → 0

exponentially as t → 0, the following corollary holds.

Corollary 2.1: Let χ = 0 be an equilibrium point for system

(8) and X ⊂ R
n be a domain containing χ = 0. System (8) is

uniformly asymptotically stable for χ ∈ X , if (i) The nominal

system (9) is uniformly asymptotically stable for χ ∈ X with

a Lyapunov function V : R≥0 × X 7→ R≥0, and two class K
functions W,W : X 7→ R≥0, such that (10)-(13) hold for any

χ ∈ X ; (ii) There exist positive constants k and ς such that

for any initial state ξ(t0) ∈ R
m, ‖ξ(t)‖ ≤ k‖ξ(t0)‖e-ς(t-t0);

(iii) [C3] holds for any χ ∈ X and ξ ∈ R
m.

III. MAIN RESULTS

In this section, the main results will be presented in two

steps. First, a distributed observer in the form of (5) is devel-

oped for each follower such that the information associated

with the leader can be estimated, including exi , eyi , θ0, ω0 and

v0. Second, a velocity controller is designed in the form of

(6) such that leader-follower formation can be achieved, while

the velocity constraints (2)-(3) are always satisfied.

For simplicity, convert the tracking errors (4) expressed in

the inertial frame to those in the Frenet-Serret frame of vehicle

i by using the following coordinate transformation [32]:
[

xei

yei

]

= R(θi)

[

exi
eyi

]

, R(θi) =

[

cos θi sin θi
− sin θi cos θi

]

,

θei = eθi , (16)

which yields the following error dynamics:

ẋei = ωiyei − vi + v0 cos θei,

ẏei = −ωixei + v0 sin θei, (17)

θ̇ei = ω0 − ωi.

Thus, to show (7), it suffices to show that for all initial states

[xei(t0) yei(t0)]
T ∈ R

2 and θei(t0) ∈ (-2π, 2π), ∀t0 ≥ 0,

lim
t→∞

xei(t) = 0, lim
t→∞

yei(t) = 0, lim
t→∞

θei(t) = 0.

A. Distributed Observer Design

Since each follower has no knowledge of the information

associated with the leader directly, the error [xei yei θei]
T and
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the velocities of the leader [v0 ω0]
T cannot be directly used in

the controller design. Thus, a dynamic observer is developed

for each follower, such that [xei yei θei]
T and [v0 ω0]

T can be

estimated. This observer is designed as follows.

First, assign a virtual leader vehicle with state [x̂i ŷi θ̂i]
T

and velocity [v̂i
˙̂
θi]

T for each follower vehicle.

Then, define êi := [êxi êyi ]
T and êθi as

êxi = x̂i − xi + dxi0, êyi = ŷi − yi + dyi0, êθi = θ̂i − θi. (18)

Note that the absolute position [xi yi]
T is not measurable and

[dxi0 dyi0]
T is not known to vehicle i. êi is used to estimate

the formation tracking error [exi eyi ]
T defined in (4), such that

[xei yei]
T can be estimated.

If assumptions [A2]-[A3] hold, v̇0 exists and
∑

j∈Ni
aij 6=

0. Then, design a dynamic observer for each follower as:

˙̂exi = v̂i cos θ̂i − vi cos θi

+
∑

j∈Ni

aij
(

(êxj − êxi ) + (xj − xi) + dxij
)

, (19)

˙̂eyi = v̂i sin θ̂i − vi sin θi

+
∑

j∈Ni

aij
(

(êyj − êyi ) + (yj − yi) + dyij
)

, (20)

˙̂
θi =

1
∑

j∈Ni

aij

∑

j∈Ni

aij
˙̂
θj +

1
∑

j∈Ni

aij

∑

j∈Ni

aij(θ̂j − θ̂i), (21)

˙̂vi =
1

∑

j∈Ni

aij

∑

j∈Ni

aij ˙̂vj +
1

∑

j∈Ni

aij

∑

j∈Ni

aij(v̂j − v̂i). (22)

The information of the ith observer [êi θ̂i v̂i
˙̂
θi ˙̂vi]

T can

be viewed as an internal state of vehicle i. By default,

[ê0 θ̂0 v̂0
˙̂
θ0 ˙̂v0]

T = [0 θ0 v0 ω0 v̇0]
T. For each follower, the

observer design uses the local information and information of

its neighbors, and thus the observer design is distributed.

The inter-vehicle information exchange with observer (19)-

(22) can be implemented as follows. If vehicle j is the

neighbor of vehicle i, the sensor of vehicle i measures its

relative position to vehicle j, i.e., [xj − xi yj − yi]
T, instead

of its own absolute position [xi yi]
T. Meanwhile, the com-

munication device of vehicle i can receive the information

[êj θ̂j v̂j
˙̂
θj ˙̂vj ]

T from vehicle j. All vehicles measure and

receive their respective information based on the topology of

digraph Ḡ. The distributed observer (19)-(22) owns a property

stated in the following lemma.

Lemma 3.1: Consider the distributed observer (19)-(22),

the leader vehicle and the digraph Ḡ. Under assumptions [A1]-

[A3], for any initial states êi(t0), θ̂i(t0), v̂i(t0),
˙̂
θi(t0), ˙̂vi(t0),

i = 0, 1, ..., N , ∀t0 ≥ 0, êi(t) → [exi (t) e
y
i (t)]

T, θ̂i(t) → θ0(t),
˙̂
θi(t) → ω0(t) and v̂i(t) → v0(t) exponentially as t → ∞.

Proof: Define

x̃i = x̂i − x0, ỹi = ŷi − y0, θ̃i = θ̂i − θ0, ṽi = v̂i − v0, (23)

νxi = v̂i cos θ̂i − v0 cos θ0, νyi = v̂i sin θ̂i − v0 sin θ0, (24)

and denote x̃ = col(x̃1, ..., x̃N ), ỹ = col(ỹ1, ..., ỹN), θ̃ =
col(θ̃1, ..., θ̃N ), ṽ = col(ṽ1, ..., ṽN ), νx = col(νx1 , ..., ν

x
N ) and

νy = col(νy1 , ..., ν
y
N ).

First, it will show that θ̂i(t) → θ0(t),
˙̂
θi(t) → ω0(t) and

v̂i(t) → v0(t) exponentially as t → ∞.

It follows from (21) that, for i = 1, ..., N ,
∑

j∈Ni

aij(
˙̂
θi − ˙̂

θj) = −
∑

j∈Ni

aij(θ̂i − θ̂j). (25)

Define ∆i =
∑

j∈Ni
aij(θ̂i− θ̂j) and (25) can be rewritten as

∆̇i = −∆i, i = 1, ..., N. (26)

Then, one can obtain ∆i(t) = e-(t-t0)∆i(t0).

Note that the Laplacian matrix L̄ of the digraph Ḡ can be

partitioned as follows:

L̄ =

(
∑N

j=1 a0j [a01, ..., a0N ]

−A01N H

)

, (27)

where A0 = diag{a10, ..., aN0}. Noting that there exist no

directed edges from followers to the leader in the digraph Ḡ,

thus
∑N

j=1 a0j = 0 and [a01, ..., a0N ] = 0.

Denote θ̂ = col(θ̂1, ..., θ̂N ). Since θ̂0 = θ0, one can obtain

[∆1, ...,∆N ]T = H(θ̂ − 1N ⊗ θ0) = Hθ̃. (28)

By assumption [A3] and Lemma 1 in [4], H is nonsingular

and all eigenvalues of H have positive real parts. Thus, −H
is Hurwitz. Since ∆i(t) = e-(t-t0)∆i(t0), it follows from (28)

that θ̃(t) → 0. Thus, θ̂i(t) → θ0(t) exponentially as t → ∞.

Denote
˙̂
θ = col(

˙̂
θ1, ...,

˙̂
θN ). Since

˙̂
θ0 = ω0, one can obtain

[

∆̇1, ..., ∆̇N

]T

= H(
˙̂
θ − 1N ⊗ ω0). (29)

It follows from (26) that ∆̇i(t) → 0 exponentially as t → ∞.

Then,
˙̂
θi(t) → ω0(t) exponentially as t → ∞. Similarly, it

can be shown that v̂i(t) → v0(t) exponentially as t → ∞.

Second, to show êi(t) → [exi (t) eyi (t)]
T exponentially as

t → ∞, it suffices to show that ‖x̂i(t) − x0(t)‖ → 0 and

‖ŷi(t)− y0(t)‖ → 0 exponentially as t → ∞.

Using (18)-(20) and [dxij dyij ]
T = [dxi0 − dxj0 dyi0 − dyj0]

T, one

can obtain

˙̃x = νx −Hx̃, ˙̃y = νy −Hỹ, (30)

where H is defined in (27). Since −H is Hurwitz, there exist

α, β > 0 such that

‖e-Hs‖ ≤ αe-βs, ∀s ≥ 0. (31)

Since νxi = (v̂i − v0) cos θ̂i + v0(cos θ̂i − cos θ0) and cos(·)
is Lipschitz continuous, there exists an lc > 0 such that

‖νx(t)‖ ≤ ‖ṽ(t)‖ + lcv
+
0‖θ̃(t)‖. Since θ̂i(t) → θ0(t) and

v̂i(t) → v0(t) exponentially as t → ∞, then there exist

α1, α2, β1, β2 > 0 such that for all t ≥ t0 ≥ 0,

‖ṽ(t)‖ ≤ α1e
-β1t‖ṽ(t0)‖, lcv

+
0‖θ̃(t)‖ ≤ α2e

-β2t‖θ̃(t0)‖. (32)

Then, it follows from (30) and (31) that

‖x̃(t)‖ = ‖e-H(t-t0)x̃(t0) +

∫ t

t0

e-H(t-τ)νx(τ)dτ‖
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≤ ‖e-H(t-t0)‖‖x̃(t0)‖+
∫ t

t0

‖e-H(t-τ)‖‖νx(τ)‖dτ

≤ αe-β(t-t0)‖x̃(t0)‖+ α(̟v +̟θ), (33)

where ̟v =
∫ t

t0
e-β(t-τ)‖ṽ(τ)‖dτ and ̟θ = lcv

+
0

∫ t

t0
e-β(t-τ)

‖θ̃(τ)‖dτ . Note that t− τ ≥ 0. Then, using (32), ̟v satisfies

̟v ≤ α1‖ṽ(t0)‖eβ1t0-βt

∫ t

t0

e(β-β1)τdτ. (34)

If β = β1, ̟v ≤ α1‖ṽ(t0)‖(t − t0)e
-β(t-t0), otherwise

̟v ≤ α1‖ṽ(t0)‖(β − β1)
-1(e-β1(t-t0) − e-β(t-t0)).

Similarly, if β = β2, ̟θ ≤ α2‖θ̃(t0)‖(t − t0)e
-β(t-t0),

otherwise ̟θ ≤ α2‖θ̃(t0)‖(β − β2)
-1(e-β2(t-t0) − e-β(t-t0)).

Therefore, it follows from (33) that ‖x̃(t)‖ → 0 expo-

nentially as t → ∞. In the same way, one can prove that

‖ỹ(t)‖ → 0 exponentially as t → ∞.

Hence, system (30) is globally exponentially stable and

‖x̂i(t) − x0(t)‖ → 0 and ‖ŷi(t) − y0(t)‖ → 0 exponentially

as t → ∞. The proof is thus completed.

Remark 3.1: Assumption [A3] ensures that each node in

the digraph Ḡ is reachable from node 0 and thus the infor-

mation associated with the leader can be properly estimated

with observer (19)-(22). The design of observer (21)-(22) for

vehicle i follows from [33], which requires [θ̂j v̂j ]
T and its

derivative [
˙̂
θj ˙̂vj ]

T from its neighbors. In fact, the derivative

can be calculated by numerical differentiation. It is noted that

the time delay of inter-vehicle communication is assumed to

be negligible in this paper.

B. Velocity Controller Design

To satisfy the velocity constraints (2)-(3), the velocity

controller in the form of (6) are designed as follows:

vi = sat(v̂i, v
+
r , v

-

r ) +
k1x̃ei

√

1 + x̃2
ei + ỹ2ei

, (35)

ωi = sat(
˙̂
θi, ω

+
r ,−ω+

r) +
k3 sin

θ̃ei
2

√

1 + x̃2
ei + ỹ2ei

+
k2 sat(v̂i, v

+
r , v

-

r )(ỹei cos
θ̃ei
2 − x̃ei sin

θ̃ei
2 )

√

1 + x̃2
ei + ỹ2ei

, (36)

where x̃ei, ỹei and θ̃ei are obtained from (18) by using the

following coordinate transformation:

[x̃ei ỹei]
T = R(θi)[ê

x
i êyi ]

T, θ̃ei = êθi . (37)

Function z = sat(a, b, c) : R3 7→ R is defined as z = a, if c ≤
a ≤ b; z = b, if a > b and z = c, if a < c. Moreover, k1, k2
and k3 are positive constants satisfying

k1 ≤ min(vmax − v+
r , v-r − vmin),

2k2v
+
r + k3 ≤ ωmax − ω+

r . (38)

The main result of this paper is summarized as follows.

Theorem 3.1: Consider the digraph Ḡ, and the closed-loop

system consisting of N error systems (17) and the distributed

dynamic control law (19)-(22) and (35)-(36). Under assump-

tions [A1]-[A3], the design parameters k1, k2 and k3 can

always be tuned such that the closed-loop system is uniformly

asymptotically stable for any initial states [xei(t0) yei(t0)]
T ∈

R
2 and θei(t0) ∈ (-2π, 2π), ∀t0 ≥ 0, while the velocity

constraints (2)-(3) are satisfied for all t ≥ t0. Equivalently,

the leader-follower formation control problem is solved by the

distributed dynamic control law (19)-(22) and (35)-(36) under

assumptions [A1]-[A3].

Proof: Based on (23), define

[x̄i ȳi]
T = −R(θi)[x̃i ỹi]

T, θ̄i = −θ̃i, (39)

v̄i = sat(v̂i, v
+
r , v

-

r )− v0, ω̄i = sat(
˙̂
θi, ω

+
r ,−ω+

r)− ω0. (40)

Thus, x̄i = xei − x̃ei, ȳi = yei − ỹei and θ̄i = θei − θ̃ei. Let

χi = [xei yei θei]
T, ξi = [x̄i ȳi θ̄i v̄i ω̄i]

T. (41)

Using (37)-(39), system (17) can be written in the form of

χ̇i = f(χi, γ(t)) + g(χi, ξi, γ(t)), (42)

with γ(t) := [v0(t) ω0(t)]
T and

f(χi, γ(t)) =





ωeiyei − vei + v0 cos θei
−ωeixei + v0 sin θei

ω0 − ωei



 ,

g(χi, ξi, γ(t)) =





yei(ωi − ωei)− (vi − vei)
−xei(ωi − ωei)
−(ωi − ωei)



 ,

where

ωei = ω0 +
k2v0(yei cos

θei
2 − xei sin

θei
2 ) + k3 sin

θei
2

√

1 + x2
ei + y2ei

, (43)

vei = v0 +
k1xei

√

1 + x2
ei + y2ei

. (44)

Then, define pei, p̄ei and qei in (45). Thus, ωi−ωei and vi−
vei can be expressed as (46) and (47) respectively. Note that

pei = 1 + x2
ei + y2ei, p̄ei = 1 + (xei − x̄i)

2 + (yei − ȳi)
2, qei = k2v0(yei cos

θei
2

− xei sin
θei
2
) + k3 sin

θei
2
, (45)

ωi − ωei = x̄i(
k2v0 sin(

θei
2 − θ̄i

2 )√
p̄ei

− (x̄i − 2xei)qei
p̄ei

√
pei + pei

√
p̄ei

) + ȳi(
−k2v0 cos(

θei
2 − θ̄i

2 )√
p̄ei

+
(ȳi − 2yei)qei

p̄ei
√
pei + pei

√
p̄ei

) + ω̄i

+ θ̄i(
k2v0 sin

θ̄i
2

θ̄i

(xei cos
θei
2 + yei sin

θei
2 )√

p̄ei
− 2 sin2 θ̄i

4

θ̄i

qei√
p̄ei

) + v̄i(
k2((yei − ȳi) cos

θei−θ̄i
2 − (xei − x̄i) sin

θei−θ̄i
2 )√

p̄ei
), (46)

vi − vei = v̄i − x̄ik1(
1√
p̄ei

+
xei(x̄i − 2xei)

p̄ei
√
pei + pei

√
p̄ei

)− ȳik1(
xei(ȳi − 2yei)

p̄ei
√
pei + pei

√
p̄ei

), (47)
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sin q
q

=
∫ 1

0
cos(qs)ds is a smooth function and | sin q

q
| ≤ 1. It

follows from (43)-(47) that f(χi, γ(t)) and g(χi, ξi, γ(t)) are

continuous in their augments, f(χi, γ(t)) is locally Lipschitz

on χi uniformly on γ and g(χi, ξi, γ(t)) is locally Lipschitz

on (χi, ξi) uniformly on γ. In what follows, Corollary 2.1 will

be used to prove Theorem 3.1.

First, it will show that system χ̇i = f(χi, γ(t)) is uniformly

asymptotically stable at χi = 0 for all χi ∈ X with

X = {(x, y, θ)|x ∈ R, y ∈ R, θ ∈ (-2π, 2π)}. (48)

Consider a Lyapunov function candidate Vi(t, χi) : R≥0 ×
X 7→ R≥0 as

Vi(t, χi) =
k2
2
(
√

1 + x2
ei + y2ei − 1) + 8 sin2

θei
4
, (49)

which is positive-definite and decrescent, and Vi(t, χi) → ∞
as ‖[xei yei]

T‖ → ∞. Taking the time derivative of Vi(t, χi)
along the trajectories of system χ̇i = f(χi, γ(t)) yields

V̇i(t, χi) =
k2(xeiẋei + yeiẏei)
√

1 + x2
ei + y2ei

+ 2θ̇ei sin
θei
2

=
−k1k2x

2
ei

1 + x2
ei + y2ei

− k2v0(xei(1− cos θei)− yei sin θei)
√

1 + x2
ei + y2ei

− 2k2v0 sin
θei
2 (yei cos

θei
2 − xei sin

θei
2 )

√

1 + x2
ei + y2ei

− 2k3 sin
2 θei

2
√

1 + x2
ei + y2ei

=
−k1k2x

2
ei

1 + x2
ei + y2ei

− k2v0(2xei sin
2 θei

2 − 2yei sin
θei
2 cos θei

2 )
√

1 + x2
ei + y2ei

− 2k2v0 sin
θei
2 (yei cos

θei
2 − xei sin

θei
2 )

√

1 + x2
ei + y2ei

− 2k3 sin
2 θei

2
√

1 + x2
ei + y2ei

= − k1k2x
2
ei

1 + x2
ei + y2ei

− 2k3 sin
2 θei

2
√

1 + x2
ei + y2ei

≤ 0. (50)

Thus, Vi(t, χi) is nonincreasing in t and bounded, which

implies that lim
t→∞

∫ t

0
V̇i(τ, χi)dτ exists and is finite. It follows

from Vi(t, χi) ≤ Vi(0, χ(0)) that xei and yei are bounded,

which implies that ẋei, ẏei and θ̇ei are also bounded. Then,

V̈i(t, χi) is bounded with respect to xei, yei and θei, and is

bounded with respect to t. Thus, V̇i(t, χi) is uniformly contin-

uous in t. It follows from Barbalat’s Lemma that lim
t→∞

x2
ei = 0

and lim
t→∞

sin2 θei
2 = 0, which yields

lim
t→∞

xei = 0, lim
t→∞

θei = 0. (51)

Next, the extended Barbalat’s Lemma [11, Lemma A.14]

will be employed to prove that yei → 0 when xei, θei → 0.

Define a function µ(t) = yei sin θei. Since lim
t→∞

θei = 0 and

yei is bounded, lim
t→∞

µ(t) = 0. Taking the time derivative of

µ(t) along the trajectories of system χ̇i = f(χi, γ(t)) yields

µ̇(t) = ẏei sin θei + θ̇eiyei cos θei = h1(t) + h2(t), (52)

where h1(t) = −k2v0y
2
ei cos θei cos

θei
2 /

√
pei and h2(t) =

ẏei sin θei + yei cos θei(k2v0xei sin
θei
2 − k3 sin

θei
2 )/

√
pei.

Since xei, yei, ẋei, ẏei and θ̇ei are bounded and vr and

ωr satisfy assumption [A1], then ḣ1(t) is bounded. Thus,

h1(t) is uniformly continuous in t. It follows from (51)

that lim
t→∞

h2(t) = 0. By the extended Barbalat’s Lemma,

lim
t→∞

h1(t) = 0, which together with assumption [A1] yields

lim
t→∞

yei = 0. (53)

Hence, system χ̇i = f(χi, γ(t)) is uniformly asymptotically

stable for χ ∈ X . It is noticed that Vi(t, χi) satisfies (10) for

any χ ∈ X . It follows from (50) that V̇i(t, χi) satisfies (11)

for any χ ∈ X . Moveover, since

∥

∥

∥

∥

∂Vi

∂χi

∥

∥

∥

∥

=

√

k22(x
2
ei + y2ei)

1 + x2
ei + y2ei

+ 4 sin2
θei
2

<
√

k22 + 4, (54)

there exist constants c1i > 2
√

k22 + 4/k2, ζi > k2/(c1ik2 −
2
√

k22 + 4) and c2i ≥
√

k22 + 4 such that (12) holds for all

χi ∈ {χi ∈ X| ‖χi‖ ≥ ζi}, and (13) holds for all χi ∈ {χi ∈
X| ‖χi‖ ≤ ζi}. Thus, condition (i) in Corollary 2.1 is satisfied.

Second, under assumption [A3], Lemma 3.1 holds. For any

θ̄i(t0), θ̄i(t) → 0 exponentially as t → ∞. Since ‖[x̄i ȳi]
T‖

= ‖[x̃i ỹi]
T‖ holds from (39) and system (30) is globally expo-

nentially stable, ‖[x̄i(t) ȳi(t)]
T‖ → 0 exponentially as t → ∞

for any [x̄i(t0) ȳi(t0)]
T. For v0(t) satisfying assumption [A1]

and any v̂i(t), |v̄i(t)| = | sat(v̂i(t), v+
r , v

-

r )− v0(t)| ≤ |v̂i(t)−
v0(t)|. By Lemma 3.1, |v̄i(t)| → 0 exponentially as t → ∞
and so does |ω̄i(t)|. Hence, there exist positive constants k
and ς such that for any ξi(t0), ‖ξi(t)‖ ≤ k‖ξi(t0)‖e-ς(t-t0),
which satisfies condition (ii) in Corollary 2.1.

Third, by using the following inequalities:

|xei|/
√
pei < 1, |yei|/

√
pei < 1, (|xei − x̄i|)/

√
p̄ei < 1,

(|yei − ȳi|)/
√
p̄ei < 1, |x̄i|/

√
p̄ei ≤ |x̄i|, |ȳi|/

√
p̄ei ≤ |ȳi|,

|xei|/
√
p̄ei ≤

√

1 + |x̄i|2, |yei|/
√
p̄ei ≤

√

1 + |ȳi|2, (55)

|ωi − ωei| ≤ |x̄i|(k2v+
0 +

(|x̄i|+ 2|xei|)(k2v+
0(|yei|+ |xei|) + k3)

pei
√
p̄ei

) + |ȳi|(k2v+
0 +

(|ȳi|+ 2|yei|)(k2v+
0(|yei|+ |xei|) + k3)

pei
√
p̄ei

)

+ |θ̄i|(
k2v

+
0(|yei|+ |xei|)

2
√
p̄ei

+
k2v

+
0(|yei|+ |xei|) + k3

2
√
p̄ei

) + |v̄i|(
k2(|yei − ȳi|+ |xei − x̄i|)√

p̄ei
) + |ω̄i|,

≤ ‖ξi‖(2k2v+
0 + 2(2k2v

+
0 + k3)(‖ξi‖+ 2) + 2k2v

+
0

√

1 + ‖ξi‖2 +
k3
2

+ 2k2 + 1), (56)

|vi − vei| ≤ k1|x̄i|(1 +
|xeix̄i|+ 2|xei|2

pei
√
p̄ei

) + k1|ȳi|(
|xeiȳi|+ 2|xeiyei|

pei
√
p̄ei

) + |v̄i|

≤ k1|x̄i|(|x̄i|+ 3) + k1|ȳi|(|ȳi|+ 2) + |v̄i| ≤ ‖ξi‖(k1(2‖ξi‖+ 5) + 1). (57)
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one can obtain inequalities (56)-(57) from (46)-(47). Noting

‖g(χi, ξi, γ(t))‖ ≤ |(vi − vei)− yei(ωi − ωei)|+ (1 + |xei|)
× |ωi − ωei| ≤ |vi − vei|+ (1 + |xei|+ |yei|)|ωi − ωei|, (58)

it follows from (56)-(57) that ‖g(χi, ξi, γ(t))‖ satisfies

‖g(χi, ξi, γ(t))‖ ≤ ‖ξi‖Θ1(‖ξi‖) + ‖ξi‖‖χi‖Θ2(‖ξi‖), (59)

where Θ1, Θ2 : R≥0 7→ R≥0 are continuous functions in ‖ξi‖.

This satisfies condition (iii) in Corollary 2.1.

Thus, by Corollary 2.1, system (42) is uniformly asymptot-

ically stable for χ ∈ X .

Finally, since v0 and ω0 satisfy assumption [A1] and

x̃ei/
√

1 + x̃2
ei + ỹ2ei, ỹei/

√

1 + x̃2
ei + ỹ2ei ∈ (−1, 1), then k1,

k2 and k3 can be tuned in accordance with (38) such that

velocity constraints (2)-(3) are always satisfied. The proof is

thus completed.

Remark 3.2: A conservative method to tune the design

parameters k1, k2 and k3 is given in (38) such that the

velocity constraints (2)-(3) are always satisfied. If the bounds

v-0 , v+
0 and ω-

0 , ω+
0 are assumed to be known, v-r , v+

r and

ω+
r in (38) can be replaced with v-0 , v+

0 and ω+
0 such that

k1, k2 and k3 may be selected larger. For vehicles with linear

velocity saturation instead of constraint (2) [20], [21], i.e.,

vi ∈ [−vmax, vmax], i = 0, 1, ..., N , the parameters k1, k2
and k3 in (35)-(36) can also be tuned such that the linear

velocity saturation and constraint (3) are satisfied, and vehicle

formation can be achieved if v0(t) does not converge to 0.

Remark 3.3: In [27], a distributed formation control law was

proposed and the velocity constraint (2) can be satisfied. This

control law design required each follower vehicle to measure

the relative positions to its neighbors from a static sensing

digraph and to have access to the real-time information of

the leader, θ0(t), ω0(t), v0(t) and v̇0(t) from communication.

This result was extended in [28] to the case where the sensing

digraph is time-varying and θ0(t), ω0(t), v0(t) are known

to all followers. In this paper, the velocity constraint (3) is

additionally taken into account. More importantly, any real-

time information of the leader, including θ0(t), ω0(t), v0(t)
and v̇0(t), is not required to be known to all followers. Each

vehicle only uses the information of itself and its neighbors

in the proposed control law (19)-(22) and (35)-(36).

Remark 3.4: It can be observed from (4) and (7) that the

achieved vehicle formation is defined in inertial frame. For

vehicle formation defined in the local Frenet-Serret frame of

the leader, the tracking errors [xei yei θei]
T in (16) can be

redefined as
[

xei

yei

]

= R(θi)

[

x0 − xi

y0 − yi

]

+

[

hx
i0

hy
i0

]

, θei = θ0 − θi, (60)

where hi0 := [hx
i0 h

y
i0]

T is the desired relative position between

vehicle i and the leader. Let hij := [hx
ij hy

ij ]
T, j ∈ Ni, denote

the desired relative position between vehicles i and j in the

local frame of vehicle i. In this case, [dxi0 dyi0]
T in (4) and (18),

and [dxij dyij ]
T in (19)-(20) can be replaced respectively with

[dxi0 dyi0]
T = R(-θi)hi0, [dxij dyij ]

T = R(-θi)hij . (61)

Then, the design of observer (19)-(20) is modified as

˙̂exi = v̂i cos θ̂i − vi cos θi − ωid
y
i0

+
∑

j∈Ni

aij
(

(êxj − êxi ) + (xj − xi) + dxij
)

, (62)

˙̂eyi = v̂i sin θ̂i − vi sin θi + ωid
x
i0

+
∑

j∈Ni

aij
(

(êyj − êyi ) + (yj − yi) + dyij
)

. (63)

Using [ḋxi0 ḋyi0]
T = ωiSR(-θi)[h

x
i0 hy

i0]
T = ωiS[d

x
i0 dyi0]

T with

S =

[

0 1
-1 0

]

and [dxij d
y
ij ]

T = [dxi0−dxj0 d
y
i0−dyj0]

T, one can

obtain system (30). In this case, Lemma 3.1 still holds. Thus,

the dynamic control law consisting of (21)-(22), (35)-(36) and

(62)-(63) can be applied to this case if hi0 is known.

Remark 3.5: To obtain the proposed control law in real

time, each follower vehicle is required to compute the real-

time internal state [êi θ̂i v̂i
˙̂
θi ˙̂vi]

T of observer (19)-(22) by

iteration and constant memory space is thus needed. It should

be noted that no matrix operation is required in (19)-(22) and

(35)-(36). Instead, only scalar operation is used in the real-

time computation of each follower vehicle. To be specific,

real-time computation of follower vehicle i includes a small

number of arithmetic operations (12|Ni| + 18 additions, 20
multiplications, 3 divisions and 1 square root) and elementary

function operations (3 sine functions and 3 cosine functions),

where |Ni| is the number of neighbors of vehicle i.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, a practical example adopted from [27] will

be considered, where five nonholonomic mobile robots with

kinematics (1) are required to follow a leader robot and

maintain a rectangle formation. It is noted that system (1) can

be used to describe not only a nonholonomic mobile robot [2],

[11], [32], but also the simplified model of a UAV equipped

with standard autopilots or a fixed-wing UAV, see [8], [2] and

references therein. By default, the values of variables are in SI

units. For convenience, the units are omitted in the following.

Consider a leader robot (labeled 0) and five follower robots

(labeled 1-5) with kinematics (1). The velocity constraints are

given as vi ∈ [3-1.8
√
2, 3+1.8

√
2] and ωi ∈ [-1.2, 1.2]. The

bounds of the group reference velocities are v+
r = 4.5, v-r = 2

and ω+
r = 0.3. The linear velocity and the angular velocity

of the leader robot are given as v0(t) = 3.25− 0.25 cos0.24t
and ω0(t) = 0.1 cos 0.2t, which satisfy assumptions [A1] and

[A2]. Based on (38), tune the design parameters k1 = 1.5,

k2 = 0.05 and k3 = 0.45.

The desired geometric pattern is a rectangle. For follower

robots, the desired relative positions to the leader are given

by [dx10 dx20 dx30 dx40 dx50]
T = [-30 -30 0 30 30]T and

[dy10 dy20 dy30 dy40 dy50]
T = [0 -30 -30 -30 0]T. The digraph

Ḡ is shown in Fig. 1, which satisfies assumption [A3].

In this example, the initial states êxi (0), ê
y
i (0), θ̂i(0), v̂i(0),

˙̂
θi(0) and ˙̂vi(0) are listed in Table I. Note that they can be

randomly chosen. For the leader robot, [ê0(0) θ̂0(0) v̂0(0)
˙̂
θ0(0) ˙̂v0(0)]

T = [0 θ0(0) v0(0) ω0(0) v̇0(0)]
T. The initial states

of all robots, [xi(0) yi(0) θi(0)]
T, i = 0, 1, .., N , are the same
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Fig. 1. The digraph Ḡ describing the network among mobile robots.

TABLE I
INITIAL STATES OF VARIABLES IN (19)-(22)

Label [êx
i
(0) êy

i
(0)]T θ̂i(0) v̂i(0)

˙̂
θi(0) ˙̂vi(0)

1 [-24.49 12.86]T π 3 0.1 0.15
2 [-5.66 -10.55]T 5π/6 3.5 -0.2 -0.21
3 [-2.49 -17.61]T 0 4.5 0.25 -0.18
4 [29.72 22.81]T -2π/3 2.5 0.25 0.13
5 [-30.00 -28.00]T 0 2 -0.15 0.16

as that in [27]. Then, apply the distributed control law (19)-

(22) and (35)-(36) to each follower robot.

Fig. 2 presents the trajectories of all mobile robots during

0-160s, which shows that robots converge to the desired

formation. Fig. 3 shows that the formation tracking errors

exi (t), eyi (t) and eθi (t) converge to 0 and the objective (7)

is achieved. Fig. 4 shows that all velocities vi(t) and ωi(t)
always stay in the constrained ranges, which indicates the

velocity constraints (2)-(3) are satisfied. These results verify

effectiveness of the proposed control law.

V. CONCLUSIONS

A distributed formation control law is proposed for net-

worked nonholonomic vehicles subject to velocity constraints.

Particularly, the linear velocity of each vehicle is constrained

to lie between two positive constants. With the proposed

control law, the leader-follower formation can be achieved in

the scenario where absolute position measurements are not

available and each follower vehicle only has access to the

information of its neighboring vehicles in a network modeled

by a directed graph.

Based on the obtained result, it is of interest to further study

the formation control of networked nonholonomic vehicles by

considering more practical issues. First, the static network will

be extended to the time-varying one. Investigating connectivity

preservation and collision avoidance within a state-dependent

network will also be interesting. Second, the presence of

unknown disturbances and uncertainties will be considered.

Third, the time delay inter-vehicle information exchange will

be taken into account.

APPENDIX

Due to the page limit, only a sketch of proof of Lemma 2.1

is presented. The proof follows from the proof of Theorem

1 and Theorem 2 in [29] by showing that (i) the solution of

(8) is globally uniformly bounded, (ii) system (8) is uniformly

stable and (iii) system (8) is uniformly asymptotically stable.
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Fig. 2. Trajectories of all mobile robots.
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Fig. 3. Formation tracking errors of each follower robot.
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Fig. 4. Velocities of each follower robot.
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Denote ϑ̇(#)(·) as the time derivative of function ϑ(·) along

the solution of the differential equation labeled (#). Different

from [29], Lemma 2.1 does not require that f(χ, γ(t)) is

continuously differentiable and V̇(9)(t, χ) is negative definite.

However, to show (i) and (ii), one can still follow the proof

of Theorem 1 in [29]. To prove (iii), at first, the smooth

converse Lyapunov theorem [31, Theorem 2.9] is utilized to

find a smooth Lyapunov function V(χ) with respect to the

origin for the nominal system (9). From Definition 2.6 in [31],

V̇(9)(χ) is negative definite and V(χ) ≤ α(χ), α ∈ K∞. It

follows from (i) and the continuity of
∂V(χ)
∂χ

that ‖∂V(χ)
∂χ

‖ is

uniformly bounded. The remaining proof for (iii) can be shown

by following the proof of Theorem 2 in [29].
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