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Abstract—This paper investigates the cooperative moving-
target enclosing control problem of networked unicycle-type
nonholonomic vehicles with constant linear velocities. The infor-
mation of the target is only known to some of the vehicles, and the
topology of the vehicle network is described by a directed graph.
A dynamic control law is proposed to steer the vehicles, such that
they can get close to orbiting around the target while the target
is moving with a time-varying velocity. Besides, the constraint of
bounded angular velocity for the vehicles can always be satisfied.
The proposed control law is distributed in the sense that each
vehicle only uses its own information and the information of
its neighbors in the network. Finally, simulation results of an

example validate the effectiveness of the proposed control law.

Index Terms—Cooperative control, nonholonomic vehicles, tar-
get enclosing, velocity constraint.

I. INTRODUCTION

RECENT years have witnessed the rapid development

in control of multi-agent systems, see [1–8] and refer-

ences therein. In particular, numerous research efforts have

been made to cooperative control of multiple unicycle-type

nonholonomic vehicles due to its wide potential applications,

such as sensor networks, environment exploration, robotic

surveillance and entertainment. On the one hand, the uni-

cycle model can be used to describe not only a mobile

wheeled robot (MWR) [9–12], but also other robotic systems,

such as the simplified model of an unmanned aerial vehicle

(UAV) equipped with standard autopilots or a fixed-wing UAV

[11, 13]. On the other hand, the group motion of multiple

vehicles for a common objective can cooperatively complete

the task, lower the cost and improve the efficiency. As re-

viewed in the recent survey [14], observing moving targets is

an important application of multi-vehicle systems, and much
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research attention has been paid to control techniques for

monitoring moving targets by cooperative vehicles.

Enclosing the target by a group of vehicles is one typical and

effective method for monitoring, for example, the ocean sam-

pling [15]. The target-enclosing control problem of unicycle-

type vehicle is a fundamental problem and has attracted much

attention since the last decade. Starting from the cyclic pursuit

problem of vehicles, it was assumed in most existing works

that the linear velocities of vehicles are constant. In [16], the

formation of multiple vehicles with identical constant linear

velocities was considered and the stability analysis on the

linearized system was given. Later, the periodic formations

was considered in [17]. In [18, 19], the cyclic pursuit problem

of vehicles with nonidentical constant linear velocities and

nonidentical desired radii was studied. For a stationary target

which was also called beacon or center, it was assumed in most

existing works that the information of the target is available to

each vehicle. In [20, 21], a comprehensive investigation on ve-

hicles with identical linear velocity was presented. A gradient

control law based on potential function was developed in [20]

for networked vehicles with a complete graph condition which

was extended to a balanced graph condition in [21]. Later in

[22], the problem of enclosing a target with nonidentical radii

by vehicles with nonidentical linear velocity was considered.

In [23], the sensory limitation in visibility of each vehicle

was taken into account, and equilibrium configurations of

the multi-vehicle systems were analysed. The result was also

validated with experiments in [24]. In [25], a hybrid switching

control law based on the relative distance between each vehicle

and the target was proposed, and it was shown that vehicles are

able to move directly to the target when they are far away from

the target. In [26], a novel distributed solution was proposed

such that the control laws are heterogeneous for vehicles but

different orbits centered at a common target can be achieved.

In [27], it was shown that the proposed controller only requires

each vehicle to use bearing angle measurements. Similar result

was obtained in [28] and the size of a disk-like target was

additionally taken into account. Some existing works further

considered the case where the information of the target is only

known to some of the vehicles. In [29], a range-defined jointly

connected proximity graph condition was used for networked

vehicles, and the target enclosing can be achieved if there is a

specified vehicle orbiting around the target. In [30], networked

vehicles with a cycle graph condition was studied. In [31], the

case for networked vehicles with a cycle graph condition and

the problem of enclosing a target with nonidentical radii was

investigated. However, these approaches were developed for

the cyclic pursuit problem or the stationary-target enclosing
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control problem, which cannot be applied to moving-target

enclosing control problem.

The main challenge in controller design for moving-target

enclosing is that each vehicle needs to orbit around the target,

and simultaneously the center of its circular motion needs to

track the trajectory of the target. For unicycle-type vehicles,

some existing works focused on the case where the velocity

of the moving target is constant. In [32, 33], it was shown

that enclosing the moving target can be achieved when the

linear velocity of the vehicle maintains constant and the target

is also a unicycle-type vehicle. In [34–36], several approaches

based on Lyapunov guidance vector field were developed, and

adaptive control laws were proposed for the case where the

target moves with an unknown constant velocity. As pointed

out in [37], the moving-target enclosing control problem

becomes more difficult if the target moves with a time-varying

velocity, even though it is known to each vehicle. In [37], a

distributed control law was proposed and the tracking errors

with respect to circular motions around the moving-target were

locally uniformly bounded. In order to make the tracking errors

converge to zero, a translation control design using the inter-

vehicle communication and the measurements of vehicles and

the target in inertial frame was proposed in [38]. In [39], a

distributed controller was developed with only requiring each

vehicle to use measurements in its local coordinate frame. In

[40], two control strategies based on backstepping techniques

were developed in Cartesian coordinates and polar coordinates

respectively. Recently in [41], the assumptions in [38] was

relaxed at the price of making the tracking errors converge to

an arbitrarily small neighborhood of zero. In [42], an approach

to moving-target enclosing control of vehicles with limited

field of view was presented.

However, all aforementioned works on the moving-target

enclosing control problem requires the assumption that the

information of the target is known to all vehicles, including the

(relative) position, velocity, and/or acceleration of the target.

This assumption inevitably limits the scope of applications.

For example, in a large group of vehicles, there may exist

only one or some of the vehicles equipped with the advanced

sensors, and only these vehicles are able to measure the states

of the target. This practical scenario motivates our study.

In fact, several works have investigated the moving-target

enclosing control problem for vehicles with simple dynamics,

such as single- or double-integrators. Most of these results also

required all vehicles to obtain some information of the target,

for instance [43–46]. Concerning the case where some of the

vehicles do not know the target, these results are extendable

by adopting some cooperative control approaches for multi-

agent systems, for example [47–49]. Recently, the problem

of enclosing multiple moving targets by double-integrators

was studied in [50, 51] where some vehicles exchange the

information with other vehicles. However, for unicycle-type

vehicles, the cooperative moving-target enclosing control pro-

blem becomes more complicated and the stability analysis

turns more difficult. Existing approaches for multi-vehicle

systems with simple dynamics cannot be directly extended.

In this paper, the network topology among vehicles and the

target is described by a directed graph. It is shown that under a

dynamic control law, vehicles with nonidentical constant linear

velocities are able to get close to traveling along heterogenous

circles centered at the target as it moves with bounded time-

varying velocity. Moreover, the constraint of bounded angular

velocity for each vehicle can always be satisfied.

The contribution of this paper is summarized as follows.

First, to the best of our knowledge, all existing results on

the moving-target enclosing control of unicycle-type vehicles

required the centralized assumption that all vehicles have the

access to the information of the target, for instance, [32–41].

The main contribution of this paper lies in relaxing this cen-

tralized assumption. The proposed control law is distributed

in the sense that each vehicle uses its own information and

information of its neighbors. This paper can be viewed as the

first attempt to solve the cooperative target enclosing control

problem of unicycle-type vehicles under the assumption that

only some of the vehicles (at least one) know the informa-

tion of the target. Second, the proposed control law enables

vehicles get close to orbiting around the moving target as in

[37, 41]. It is not only shown that the tracking error is globally

uniformly ultimately bounded rather than locally uniformly

bounded in [37], but also proved that the trajectory of each

vehicle can converge to a moving-target enclosing motion

with first-order smallness. Note that the price of relaxing the

aforementioned centralized assumption is an ultimate bound

of the tracking error. Finally, compared with [32–35, 37–41],

the assumption that the desired radii around the target are not

identical, which extends the scope of practical application.

Compared with [37–41], our result can be applied to the

scenarios where vehicles are required to cruise at constant

linear velocities. For instance, the constraint of constant linear

velocity applies with some low-cost UAVs, e.g., Aerosonde

[52]. Moreover, compared with those existing controllers, our

design ensures the constraint of bounded angular velocity to

be always satisfied.

The remainder of this paper is organized as follows. In

Section II, we introduce the problem setting and give the

problem formulation. In Section III, we first propose a dy-

namic control law and then present the stability analysis on

the resulting closed-loop system. In Section IV, simulation

results are shown to illustrate the main result. In Section V,

the conclusion is drawn.

Notations: The following notations are used throughout the

paper. For a vector x ∈ R
n and a matrix K ∈ R

n×n,

‖x‖ = ‖x‖2 =
√

∑n
i=1 |xi|2, ‖x‖∞,T = sup

t≥T

‖x(t)‖∞ =

sup
t≥T

(
n

max
i=1

|xi(t)|), and ‖K‖ = ‖K‖2. Function sign(x) : R →
{1,−1} is the signum function, and ⊗ denotes the Kronecker

product on two matrices.

II. PROBLEM FORMULATION

Consider a group of N unicycle-type nonholonomic vehi-

cles, and the kinematics of each vehicle i, i = 1, 2, ..., N , is

described by:

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi (1)
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Fig. 1. Illustration of the variables.

where pi := [xi yi]
T ∈ R

2 and θi ∈ R are the position and

the heading angle respectively; see Fig. 1 for an illustration.

vi ∈ R and ωi ∈ R are linear velocity and angular velocity

respectively. As in [16, 17, 20, 21, 23, 32, 33], vi is assumed

to be a positive constant, and ωi is used as the control input

of system (1). Different from [16, 17, 20, 21], the constant

linear velocities are allowed to be nonidentical. Moreover, the

following constraint of angular velocity is considered:

−ωmax
i ≤ ωi ≤ ωmax

i (2)

where ωmax
i is a nonidentical given positive constant of vehicle

i as the bound of angular velocity.

The objective is to steer each vehicle such that it can orbit

around a target with a given radius ri >
vi

ωmax
i

. The target is

assumed to move in a trajectory q0 := [x0 y0]
T with bounded

velocity and acceleration; see Fig. 1 for an illustration. That

is, v0 := q̇0 satisfies the following assumption.

Assumption 1: The velocity of the target v0(t) is bounded

for all t ≥ t0, and v̇0 exists and is also bounded.

In this paper, we consider the case where only some of

the vehicles know the information of the target. The multi-

vehicle systems are required to be installed with the sensors

and communication devices. The vehicle network is built based

on the setting where each vehicle only has access to the

information of its neighbors in a network. The concerned

network is described by a directed graph Ḡ as follows.

First, the network among N vehicles is described by a

directed graph G = {O, E}, where O = {1, ..., N} is a

finite set of nodes representing N vehicles, and E ⊆ {(j, i) :
j 6= i, i, j ∈ O} is a set of edges containing directed edges

from node j to node i. Denote the target by node 0. Then,

a directed graph Ḡ = {Ō, Ē} with Ō = O ∪ {0} and

Ē = E ∪ {(0, i), i ∈ O}, can be obtained by combining G
and node 0. Vehicle i has access to the information of vehicle

j if (j, i) ∈ E , j 6= i, or the target if (0, i) ∈ Ē . Node j is

called the neighbor of node i if (j, i) ∈ Ē , and all neighbors of

node i locates in a set N̄i ⊆ O. Define aij = 1 if (j, i) ∈ Ē ,

otherwise aij = 0. Finally, graph Ḡ is assumed to satisfy:

Assumption 2: The directed graph Ḡ contains a directed

spanning tree with node 0 being the root.

According to the objective, the desired group motion can

be summarized as a moving-target enclosing motion which is

formally defined as follows.

Definition 1: A trajectory p̌(t) := [p̌T

1(t)...p̌
T

N (t)]T for the

group of nonholonomic vehicles (1) is called a moving-target

enclosing motion if

p̌i(t)− q0(t) = ri∠ϕi(t), ϕ̇i > 0 (3)

for all t ≥ t0, where q0(t) is the position of the moving-target,

and ri is the given radius of vehicle i.

Then, the formal problem statement of the cooperative

moving-target enclosing control problem to be solved in this

paper is given as follows.

Problem 1: For each vehicle (1) with any initial state

[pT

i(t0) θi(t0)]
T ∈ R

3, ∀t0 ≥ 0, given a target q0(t) moving

with velocity v0(t), set any radius ri >
vi

ωmax
i

, and find a

dynamic control law in the form of

ωi = ςi(pi, θi,ρi, ri, vi)

ρ̇i = ̺i(pi, θi,ρi,ρj, ri, vi), j ∈ N̄i (4)

such that the trajectory of p := [pT

1, ...,p
T

N ]T converges to a

moving-target enclosing motion p̌ defined in Definition 1, i.e.,

lim
t→∞

(p(t)− p̌(t)) = 0 (5)

where ρi is an designed adaptive state used to estimate the

state of the target, and ςi(·) and ̺i(·) are sufficiently smooth

functions.

Remark 1: Different from [37–41], we studied vehicles with

constant linear velocities. Since only one control input channel

is considered in this paper, the objective for position or phase

distribution around the moving target is not included. As in

[32–34, 36], we focus on controller design for enclosing the

moving target. It is of practical meaning to consider vehicles

with constant linear velocities. Though most existing vehicles

have ability to control linear velocities, yet many ground,

aerial, or surface vehicles are equipped with the cruise control

system or similar servo systems which are used to maintain

the steady speed. Some vehicles is constrained to cruise with

a constant linear velocity, for example a low-cost UAV called

Aerosonde [52]. A vehicle cruising at a constant speed can

maintain the operation efficiency, increase the fuel economy,

improve the passengers’ comfort, and reduce the wear of

onboard devices. Due to the advantages of using constant lin-

ear velocity, many existing works on target enclosing control

of unicycle-type vehicles assumed constant linear velocities

[15, 20–23, 32, 33]. In particular, an application to adaptive

ocean sampling by a fleet of self-directed underwater gliders

was demonstrated in [15]. The strategy used in [15] took into

account that gliders effectively operate at constant speed, i.e.,

constant vi.

Remark 2: Under Assumption 2, only some of the vehicles

(at least one) is required to know the information of the target.

Assumption 2 is more relaxed than that in [32–41] where

all vehicles needs to know some information of the target.

Besides, Assumption 2 indicates that the network topology

among vehicles is not limited to a cycle [16–19, 37–39]. It

is noted that the constant linear velocities and the desired

radii are allowed to be nonidentical. This assumption is more

relaxed than that used in [34, 35, 37–41], where the constant

linear velocities and the desired radii have to be identical.

Enclosing a target with different radii was also considered in

some existing works, such as [22, 26], which can be applied to



4 AUTHOR VERSION OF DOI: 10.1109/TCYB.2018.2873904

some practical scenarios. For instance, a fleet of UAVs cruising

in different altitudes aim to monitor a target of which the shape

is a pyramid in 3-D space. If the UAVs need to monitor the

surface of the target at the same distance, they have to choose

nonidentical radii relative to the axle wire of the target.

III. MAIN RESULT

In this section, we first propose a solution to the cooperative

moving-target enclosing control problem, i.e., Problem 1, and

then present the stability analysis on the closed-loop system

consisting of the proposed control law and the vehicle system.

A. Control Law Design

First, introduce a coordinate transformation pi 7→ qi :=
[x̄i ȳi]

T, i = 1, 2, ..., N, as

x̄i = xi − ri sin θi, ȳi = yi + ri cos θi, (6)

and qi represents the circular motion center of vehicle i; see

Fig. 1 for an illustration. Then, system (1) can be transformed

into the following system

q̇i = [cos θi sin θi]
T
(vi − ωiri)

θ̇i = ωi, i = 1, 2, ..., N. (7)

System (7) can be viewed as the dynamics of the circular

motion center. Thus, to achieve (5), it suffices to show that

lim
t→∞

(qi(t)− q0(t)) = 0, i = 1, 2, ..., N. (8)

However, under Assumption 2, some vehicles do not have

access to the target. To handle this situation, we introduce a

new variable ηi ∈ R
2 for each vehicle i. ηi and η̇i serve

as the estimates for the position and velocity of the target

respectively. For each vehicle i, the initial states ηi(t0) and

η̇i(t0) can be arbitrary selected in R
2. Besides, set η0 = q0

and η̇0 = q̇0 = v0 by default.

Then, we propose the following dynamic control law:

ωi =
1

ri
(vi + [cos θi sin θi]σi(k(εi)(qi − ηi)− η̇i)) (9)

η̇i =
1

ci

∑

j∈N̄i

aij η̇j +
µ

ci

∑

j∈N̄i

aij(ηj − ηi), j ∈ N̄i (10)

where µ > 0 is any constant, ci =
∑

j∈N̄i

aij , k(εi) ∈ R
2×2

is a gain matrix defined as k(εi) = diag{εi, εi} with any

constant εi > 0, and function σi(·) is defined as σi([z1 z2]
T) =

[sat(z1) sat(z2)]
T with sat(zl) = sign(zl)min(zl,mi), l =

1, 2, and a constant mi satisfying

0 < mi ≤
1√
2
(ωmax

i ri − vi). (11)

The dynamic control law (9)–(10) is in the form of (4), and

is distributed in the sense that it only requires each vehicle to

use its own information pi, θi, ηi and η̇i, and the information

of its neighbors ηj and η̇j , j ∈ N̄i. For each vehicle i, sensors

are required to measure pi and θi, and communication devices

are needed to obtain ηi and η̇i, j ∈ N̄i. For the vehicle which

is the neighbor of the target, i.e., vehicle i, i ∈ N̄0, it can

measure q0 and v0 by sensors.

Now, the main result is presented as follows.

Theorem 1: Under Assumptions 1 and 2, the cooperative

moving-target enclosing control problem, i.e., Problem 1, is

solved by control law (9)–(10) with first-order approximation

if there exists a constant δ ∈ (0, 1) and a T ≥ t0 such that

‖v0‖∞,T ≤ (1 − δ)M (12)

where M =
N

min
i=1

mi is a constant with mi defined in (11).

That is, the trajectory of vehicles p := [pT

1, ...,p
T

N ]T converges

to the moving-target enclosing motion p̌ defined in Definition

1 with first-order approximation. Moreover, the constraint of

bounded angular velocity (2) can always be satisfied.

Remark 3: The solvability condition (12) requires the

target to move in a suitable velocity, which is of practical

meaning. If the target is moving too fast, the vehicles are

not able to track it while keeping a circular motion around

it. Similar conditions were also assumed in [32, 33, 38–40].

To implement the proposed control law (9)–(10), each vehicle

needs to measure its states in inertial frame by sensors and

to obtain the information of its neighbors by communication

devices, which is the same as that in [38]. However, compared

with [38], the information of the target can only be known to

some, not necessary all vehicles.

Remark 4: As the communication is assumed to be available

in the network, a so-called “hopping” strategy described as

follows can also be used. When vehicle k measures the infor-

mation of the target [qT

0(ts) v
T

0(ts)]
T at instant ts, it transmits

[qT

0(ts) vT

0(ts)]
T to its neighbor vehicle i, i ∈ N̄k. After

receiving the information from vehicle k, vehicle i transmits

[qT

0(ts) vT

0(ts)]
T to vehicle j, j ∈ N̄i. In the same manner,

all vehicles will eventually obtain [qT

0(ts) v
T

0(ts)]
T. This “hop-

ping” strategy was employed in [25], but has the following

defect. Some vehicles have to wait long before they receive the

information. These vehicles cannot obtain [qT

0(ts) vT

0(ts)]
T at

an instant near ts. Especially for a network consisting of large

number of vehicles, the time delay caused by the “hopping”

strategy will be large and cannot be neglected. However, our

strategy does not require any vehicles to wait long. Each

vehicles only needs to transmit its own information timely.

As the time delay of the direct communication between two

vehicles is usually small in practice, the time delay of the

multi-vehicle systems can be ignored.

Remark 5: According to [53], let λ̄(k) denote the log

norm of matrix k (associated with the 2-norm), i.e.,λ̄(k) :=
max{λ|λ : an eigenvalue of (k + kT)/2}. It follows from the

design of k(εi), [53], and [54] that

‖e−k(εi)t‖ ≤ eλ̄(−k(εi))t = e−εit

‖ek(εi)t‖ ≤ eλ̄(k(εi))t = eεit. (13)

Moreover, the design of k(εi) make ‖k(εi)‖ satisfy

‖k(εi)‖ = εi, ‖k(εi)e−k(εi)t‖ ≤ εie
−εit. (14)
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B. Stability Analysis

In what follows, the proof of Theorem 1, i.e., the stability

analysis is presented in three steps. First, we show that the

estimates ηi and η̇i can converge to q0 and v0 respectively.

Then, we show that the trajectories of the closed-loop system

consisting of system (7) and control law (9)–(10) can be

approximated by an averaging system. Finally, we prove that

the averaging system is globally exponentially stable.

1) Convergence of the Estimates: By the distributed update

law (10), the estimates ηi and η̇i are able to converge to q0
and v0 respectively, as is stated as follows.

Proposition 1: Consider N systems (10), a target q0, and

a given graph Ḡ. For any initial states [ηT

i(t0) η̇T

i(t0)]
T ∈ R

4,

i = 1, ..., N , each [ηT

i(t) η̇T

i(t)]
T converges to [qT

0(t) vT

0(t)]
T

exponentially as t→ ∞ under Assumptions 1 and 2.

Proof: Define η̃i = ηi − q0 and it follows from (10) that
∑

j∈N̄i

aij( ˙̃ηi − ˙̃ηj) = µ
∑

j∈N̄i

aij(η̃j − η̃i), j ∈ N̄i. (15)

Defining φi =
∑

j∈N̄i

aij(η̃j − η̃i), (15) becomes φ̇i = −µφi.

Then, φi(t) converges to 0 exponentially as t→ ∞.

Denote φ = col(φT

1, ...,φ
T

N ) and η̃ = col(ηT

1, ...,η
T

N ), and

it follows that

φ = (H⊗ I2)η̃ (16)

where H is a block matrix in the Laplacian matrix L̄ of the

directed graph Ḡ. The Laplacian matrix L̄ can be partitioned

as follows:

L̄ =

(

0 0
−A01N H

)

(17)

where A0 = diag(a10, ..., aN0). Under Assumption 2, it

follows from [49, Lemma 1] that H is a nonsingular matrix

with all eigenvalues having positive real parts.

Since φ(t) converges to 0 exponentially as t → ∞, using

(16) yields that η̃(t) converges to 0 exponentially as t→ ∞.

Thus, each ηi(t) converges to q0 exponentially as t→ ∞.

Since φ̇(t) converges 0 exponentially as t→ ∞, it follows

from (16) that φ̇ = (H ⊗ I2) ˙̃η, and ˙̃η(t) converges to 0

exponentially as t → ∞. Thus, each η̇i(t) converges to q̇0,

i.e., v0(t) exponentially as t→ ∞.

The proof is thus completed.

2) Approximation of an Averaging System: The closed-loop

system consisting of system (7) and control law (9)–(10) can

be written as

q̇i = −b(θi)fi(qi,ηi)

θ̇i = ωi (18)

where

b(θi) =

[

cos2 θi cos θi sin θi
sin θi cos θi sin2 θi

]

fi(qi,ηi) = σi(k(εi)(qi − ηi)− η̇i). (19)

Motivated by [29], we adopt an approximation method and

then obtain an average system for system (18), so as to tackle

the nonlinearity of system (18). The average system for system

(18) can be obtained by the following proposition.

Proposition 2: Consider the closed-loop system (18) with

the parameter ri fixed and vi sufficiently large. Define T̄ =
2πri
vi

and an average state

q̄i(t) =
1

T̄

∫ t+T̄

t

qi(τ)dτ, t ≥ t0. (20)

Then, for any t ≥ t0, we have

q̄i(t) = qi(t) +O(
ri
vi
) (21)

˙̄qi = −fi(q̄i,ηi) +O(
ri
vi
) (22)

where O( ri
vi
) represents the first order of smallness as ri

vi
→ 0.

Proof: Since fi(·) is a bounded function, ‖fi(q̄i,ηi)‖ and

q̇i are bounded. Denote ‖q̇i‖ ≤ µ1 ≤ ∞, and then we have

‖qi(τ)− qi(t)‖ = ‖
∫ τ

t

q̇i(s)ds‖ ≤ µ1(τ − t)

≤ µ1T̄ =
2µ1πri
vi

, ∀τ ∈ [t, t+ T̄ ]. (23)

For the smooth trajectory qi(s), s ∈ [t, t+T̄ ], there exists some

instant τ such that qi(τ) =
1
T̄

∫ t+T̄

t
qi(s)ds, which together with

(23) implies that ‖q̄i(t)− qi(t)‖ ≤ 2µ1πri
vi

or q̄i(t)− qi(t) =
O( ri

vi
). Thus, (21) is obtained.

Next, it follows from (19) that

‖fi(qi(τ),ηi(τ)) − fi(qi(t),ηi(t))‖
≤ µ2‖k(εi)(qi(τ) − qi(t))− k(εi)(ηi(τ) − ηi(t))

− (η̇i(τ) − η̇i(t))‖
≤ µ3‖qi(τ)− qi(t)‖ + µ4‖ηi(τ)− ηi(t)‖

+ µ5‖η̇i(τ)− η̇i(t)‖ (24)

for some positive constants µ2, µ3, µ4, and µ5. By Proposition

1 and Assumption 1, η̇i and η̇i are bounded. Then, µ4‖ηi(τ)−
ηi(t)‖+µ5‖η̇i(τ)−η̇i(t)‖ ≤ 2µ6πri

vi
for some positive constant

µ6, which together with qi(τ) − qi(t) = O( ri
vi
) implies that

fi(qi(τ),ηi(τ)) − fi(qi(t),ηi(t)) = O(
ri
vi
). (25)

Thus, with q̄i(t)− qi(t) = O( ri
vi
), we have

fi(q̄i(t),ηi(t))− fi(qi(t),ηi(t)) = O(
ri
vi
). (26)

Furthermore, we have the following calculation:

˙̄qi(t) =
1

T̄

d

dt

∫ t+T̄

t

qi(τ)dτ =
1

T̄

∫ t+T̄

t

d

dt
qi(τ)dτ

= − 1

T̄

∫ t+T̄

t

b(θ(τ))fi(qi(τ),ηi(τ))dτ

= − 1

T̄

∫ t+T̄

t

b(θ(τ))dτ(fi(q̄i(t) +O(
ri
vi
),ηi(t))) +O(

ri
vi
))
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= − 1

T̄

∫ t+T̄

t

b(θ(τ))dτ(fi(q̄i(t),ηi(t)) +O(
ri
vi
))

= −fi(q̄i(t),ηi(t)) +O(
ri
vi
) (27)

where it is noted that θ(τ) = ωiτ and 1
T̄

∫ t+T̄

t
b(vi

ri
τ)dτ = I2.

The proof is thus completed.

Denote q = col(qT

1, ..., q
T

N ), θ = col(θ1, ..., θN ), η =
col(ηT

1, ...,η
T

N ), B(θ) = diag(b(θi), ..., b(θN )), F (q,η) =
col(f1(q1,η1), ...,fN (qN ,ηN )). Then, the closed-loop sys-

tem consisting of N systems (18) can be written in form of

q̇ = −B(θ)F (q,η). (28)

If the smallness O( ri
vi
) in (21) and (22) is ignored, we have

q̇i = −fi(qi,ηi). (29)

Then, the system consisting of N systems (29) is written as

q̇ = −F (q,η) (30)

which is called the average system of system (28). That is, by

ignoring the smallness O( ri
vi
) in (21) and (22), the trajectory

of system (28) can be approximated by that of system (30).

As in [29], we establish the stability analysis on the ap-

proximate system (28), and then run simulation on the original

system (30) to illustrate the effectiveness of this approach.

3) Stability of the Averaging System: To prove Theorem 1,

it remains to show that the trajectory of the average system

(30) can converge to 1N ⊗q0(t) as t→ ∞ for any initial state

q(t0), ∀t0 ≥ 0.

To this end, consider the tracking error defined as

q̃i = qi − q0. (31)

Based on (29), the error dynamics are obtained as follows:

˙̃qi = −σi(k(εi)(q̃i − η̃i)− ˙̃ηi − v0)− v0. (32)

If the saturation element in σi(·) is nonexistent, system (32)

becomes

˙̃qi = −k(εi)(q̃i − η̃i)− ˙̃ηi. (33)

In this case, the following proposition holds.

Proposition 3: System (33) is globally asymptotically stable

at q̃i = 0 if Proposition 1 holds.

Proof: See Appendix A.

Next, we show that the saturation element in σi(·) will be

nonexistent after some instant, and system (32) will operate

linearly as system (33) from then on.

By condition (12), there exists an instant T1 such that

‖v0‖∞,T1 ≤ (1− δ)M, 0 < δ < 1. (34)

By Proposition 1, [η̃i(t) ˙̃ηi(t)]
T converges to [q0(t) v0(t)]

T

exponentially. Then, under Assumption 1, there exists an

instant T2 ≥ T1 such that for all η̃i(t0) and ˜̇ηi(t0),

‖k(εi)η̃i‖∞,T2 ≤ δM

3
, ‖ ˙̃ηi‖∞,T2 ≤ δM

3
. (35)

It can be observed from (32) that the trajectory of q̃i(t) is

determined by a linear differential equation with two bounded

functions σi and v0, i.e.,

q̃i(T2) =q̃i(t0) +

∫ T2

t0

(σi(k(εi)(q̃i(τ) − η̃i(τ))

− ˙̃ηi(τ)− v0(τ)) − v0(τ))dτ. (36)

Thus, for an arbitrary q̃i(t0), q̃i(T2) is bounded independent

of εi, and there exists a constant β1 > 0 associated with q̃i(t0)
such that

‖q̃i(T2)‖ ≤ β1. (37)

Assume that the saturation element in σi(·) is nonexistent

from T2 onwards. Then, system (32) becomes (33). Note that

η̃i(t) converges to 0 exponentially with a rate independent of

εi. It follows from (14) and (33) that for a given εi, there exist

a constant β2 > 0 such that
∫ ∞

T2

‖eεiτ (k(εi)η̃i(τ) − ˙̃ηi(τ))‖dτ ≤ β2. (38)

Then, using (13) and (14), we have the following calculation

for any instant t ≥ T2,

‖k(εi)q̃i(t)‖ = ‖k(εi)(e−k(εi)(t−T2)q̃i(T2))

+

∫ t

T2

e−k(εi)(t−τ)(k(εi)η̃(τ) − ˙̃ηi(τ))dτ‖

≤ β1εie
−εi(t−T2) + εie

−εi(t−T2)

×
∫ t

T2

‖ek(εi)τ (k(εi)η̃i(τ)− ˙̃ηi(τ))‖dτ

≤ β1εie
−εi(t−T2) + εie

−εi(t−T2)

×
∫ t

T2

‖eεiτ (k(εi)η̃i(τ) − ˙̃ηi(τ))‖dτ

≤ β1εie
−εi(t−T2) + β2εie

−εi(t−T2)

≤ (β1 + β2)εi. (39)

If (β1 + β2)εi <
δM
3 , then

‖k(εi)q̃i‖∞,T2 <
δM

3
. (40)

By combining (34), (35), and (40), we have

‖k(εi)(q̃i − η̃i)− ˙̃ηi − v0‖∞,T2

<
δM

3
+
δM

3
+
δM

3
+ (1− δ)M =M, (41)

which shows that system (32) will operate linearly after instant

T2.

If (β1 + β2)εi ≥ δM
3 , it is possible that system (32) will

not operate linearly in some instants after T2 if the following

two cases happen. To analyze these two cases, we denote q̃i =
[x̃i ỹi]

T and v0 = [vx0 vy0 ]
T, and consider the dynamics of ˙̃xi

and ˙̃yi separately.

In the first case, there is an instant T3 > T2 such that

[1 0]σi(T3) = mi and then ˙̃xi(T3) = −mi − vx0 (T3), which

implies that x̃i(T3) ≥ δmi

3 ≥ δM
3 > 0. Since |vx0 | < M ≤ mi,

then ˙̃xi(T3) < 0 and x̃i(t), t > T3, will decrease.

In the second case, there is an instant T3 > T2 such that

[1 0]σi(T3) = −mi and then ˙̃xi(T3) = mi − vx0 (T3), which

implies that x̃i(T3) ≤ − δmi

3 ≤ − δM
3 < 0. Since |vx0 | < M ≤
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mi, then ˙̃xi(T3) > 0 and x̃i(t), t > T3, will increase.

In both case, |x̃i(t)| will decrease. As |x̃i(t)|, t > T3,

maintain decreasing, there must exist an instant T4 ≥ T3 such

that ‖εix̃i‖∞,T4 <
√
2δM
6 .

Using the same analysis above, we can also obtain that there

exist an instant T5 ≥ T4 such that ‖εiỹi‖∞,T5 <
√
2δM
6 .

Thus, we have ‖k(εi)q̃i‖∞,T5 <
δM
3 , and then

‖k(εi)(q̃i − η̃i)− ˙̃ηi − v0‖∞,T5 < M, (42)

which indicates that system (32) will operate linearly after in-

stant T5. By Proposition 3, q̃i(t) converges to 0 exponentially

as t→ ∞.

Finally, it follows from (9) that the angular velocity ωi

satisfies the following inequality

vi
ri

−mi(sin θi + cos θi) ≤ ωi ≤
vi
ri

+mi(sin θi + cos θi).

Then, with mi selected by (11), the constraint of bounded

angular velocity (2) can always be satisfied.

Hence, the proof of Theorem 1 is completed.

C. Discussions

The main difficulty of making the tracking error q̃i(t) =
qi(t) − q0(t), i = 1, .., N , converge to 0 lies in the fact that

the trajectory of qi(t) is in a 2-D plane but is controlled by

one input channel, i.e., vi − ωiri. This basic feature can be

observed from (7), and is essentially due to the nonholonomic

constraint of the unicycle model, i.e., [sin θi − cos θi]ṗi = 0.

To tackle the term [cos θi sin θi]
T

in system (7), we have added

the term [cos θi sin θi] in controller (9) and b(θi) in system

(18) is thus obtained. Based on (18), the error dynamics are

˙̃qi = −b(θi)σi(k(εi)(q̃i − η̃i)− ˙̃ηi − v0)− v0. (43)

Then, in order to deal with the nonlinearity of b(θi), we adopt

an averaging system method used in [29].

We have proved that the error dynamics of the average

system (30) is exponentially stable at [q̃T

i η̃T

i ]
T = 0. While

[q̃T

i η̃T

i ]
T = 0 is not the equilibrium for the original error

dynamics (43), as system (43) becomes ˙̃qi = b(θi)v0 − v0

when [q̃T

i η̃T

i ]
T = 0. As shown in Proposition 2, the trajectory

of the average system (30) can approximate that of the original

system (28) with the first-order smallness O( ri
vi
). To minimize

the first-order smallness O( ri
vi
), we can select a large vi or a

small ri, and meanwhile ensure ωmax
i ri > vi. In practice, if

vehicles are allowed to stay close to the given target, radii ri
can be set as small as possible. Once the radii ri are set, the

constant linear velocities vi need to be as large as possible.

Besides, Theorem 1 indicates that the velocity of the given

target needs to be properly bounded as (12). In fact, if vehicles

have much larger linear velocities than the velocity of the

target, they will have more allowance of velocities to orbit

around the target in addition to tracking the target. Hence, in

practice, it is desirable for the vehicle to be capable of a large

linear velocity.

Based on the stability analysis presented above, we have the

following corollaries.

Corollary 1: Consider error dynamics (43), the trajectory of

the tracking error q̃i is globally uniformly ultimately bounded

if Assumptions 1–2 and condition (12) are satisfied.

Corollary 2: The error dynamics (43) is globally uniformly

asymptotically stable at q̃i = 0 if Assumptions 1–2 and

condition (12) are satisfied, and there exists an instant T ′ such

that ‖v0‖∞,T ′ = 0.

Sketch of Proof: Based on the proof of Theorem 1, if

Assumptions 1–2 and condition (12) are satisfied, there exists

an instant T2 such that system (43) will operate without the

saturation element after T2 and becomes

˙̃qi = −b(θi)k(εi)q̃i + b(θi)(k(εi)η̃i + ˙̃ηi + v0)− v0. (44)

First, consider the case where there exists an instant T ′

such that ‖v0‖∞,T ′ = 0. In this case, after an instant T6 =
max{T ′, T5}, system (44) can be written as a nominal system

˙̃qi = −b(θi)k(εi)q̃i (45)

with a perturbation b(θi)(k(εi)η̃i+ ˙̃ηi). It follows from Propo-

sition 1 that this perturbation converges to 0 exponentially.

For the nominal system (45), consider a Lyapunov function

candidate V (q̃i) =
1
2 q̃

T

i q̃i. The time derivative of V (q̃i) along

the trajectory of system (45) can be obtained as

V̇ (q̃i) = −q̃T

ib(θi)k(εi)q̃i (46)

where it is noted that k(εi) is a scalar matrix with all diagonal

elements positive. Since b(θi) is a symmetric matrix of which

the eigenvalues are always 1 and 0 irrespective of θi, we have

V̇ (q̃i) ≤ 0. Then, system (45) is globally uniformly stable. As

V (q̃i) is nonincreasing in t and bounded, lim
t→∞

∫ t

0
V̇ (q̃i(τ))dτ

exists and is finite, and q̃i is bounded. Since ωi is bounded,

V̈ (q̃i) is bounded and V̇ (q̃i) is uniformly continuous in t. By

Barbalat’s Lemma, lim
t→∞

q̃i(t) = 0. Thus, the nominal system

(45) is globally uniformly asymptotically stable. Finally, by

using [55, Lemma 2.1], Corollary 2 can be obtained.

Furthermore, system (44) is essentially a nominal system

˙̃qi = −b(θi)k(εi)q̃i + b(θi)(k(εi)η̃i + ˙̃ηi) (47)

with a perturbation b(θi)v0−v0. Using the proof of Corollary

2, we can prove that the nominal system (47) is globally

uniformly asymptotically stable. The perturbation b(θi)v0−v0

is bounded under Assumption 1, and is nonvanishing if v0(t)
does not converge to 0. Then, similar to the proof of [55,

Lemma 2.1], it can be obtained that q̃i is globally uniformly

ultimately bounded, as stated in Corollary 1.

It is obvious the ultimate bound will be smaller as the bound

of v0 is smaller. For a given target velocity v0, Theorem

1 indicates that minimizing the first order smallness O( ri
vi
)

can still reduce the ultimate bound. This fact can be observed

by the following analysis. It follows from system (44) that

q̃i(t) = ψi(t, T
′
2)q̃i(T

′
2) +

∫ t

T ′

2
ψi(t, τ)(b(θi(τ))(k(εi)η̃i(τ) +

˙̃ηi(τ) + v0(τ)) − v0(τ))dτ , ∀t ≥ T ′
2 ≥ T2, where ψi(t, T

′
2)

is the state transition matrix corresponding to system matrix

b(θi(t))k(εi), and instant T ′
2 is selected such that ‖η̃i(t)‖

and ‖ ˙̃ηi(t)‖, ∀t ≥ T ′
2, are sufficiently small since η̃i(t)

and ˙̃ηi(t) exponentially converge to zero as t → ∞ by

Proposition 1. By system (45) and Corollary 2, we can obtain



8 AUTHOR VERSION OF DOI: 10.1109/TCYB.2018.2873904

ψi(t, T2)q̃i(T2), ∀t ≥ T2, converges to zero as t → ∞.

Thus, the bound of the track error q̃i is determined by
∫ t

T ′

2
ψi(t, τ)(b(θi(τ))−I2)v0(τ)dτ . Note that θ(τ) = ωiτ and

1
T̄

∫ t+T̄

t
b(vi

ri
τ)dτ = I2, where T̄ is defined as T̄ = 2πri

vi
. If ri

vi

is sufficient small, then
∫ t

T ′

2
ψi(t, τ)(b(θi(τ))− I2)v0(τ)dτ is

small. If ri
vi

is large, we may use 2‖v0‖∞,T (the upper bound

of ‖(b(θi(t)) − I2)v0(t)‖) to compute the ultimate bound of

the track error q̃i. Moreover, Corollary 2 implies that for the

stationary-target case, the proposed control law can make the

tracking error q̃i(t) converge to 0.

Remark 6: Although there exist approaches on distributed

control of multi-agent systems or target enclosing control of

unicycle-type vehicles, yet these approaches cannot be directly

applied or easily extended to the particular problem studied in

this paper. This fact can be observed by the following three

aspects. First, the cooperative moving-target enclosing control

problem of multi-agent systems is more complicated than typ-

ical distributed control problems of multi-agent systems, such

as the leaderless/leader-following consensus and formation

[1–4]. Several existing works have studied this problem for

multi-agent systems with simple linear dynamics, for instance

multiple single- or double-integrators [43–46]. Second, the

cooperative target enclosing control problem becomes more

difficult for multiple unicycle-type vehicles. Most existing

works on unicycle-type vehicles only studied the stationary-

target enclosing control problem, as reviewed in Section I.

But the case with a stationary target is only a special case

of the one with a moving target. Besides, most existing

approaches for the case with a stationary target assumed the

position of the target is known to all vehicles, for instance

[20, 23, 25–28]. While Corollary 2 shows that our proposed

control law makes vehicles enclose the stationary target under

the assumption that only some of the vehicles know the

position of the target. Third, the cooperative target enclosing

control problem becomes more challenging if the vehicles

are unicycle-type and the target moves with a time-varying

velocity, as pointed out in [37–40]. To solve this particular

problem, all existing approaches rely on the global knowledge

of the information of the target. In particular, for a target

with a constant velocity, all vehicles have to know its position

[34–36], or its position and velocity [32, 33]. For a target

with a time-varying velocity, all vehicles have to know its

position, velocity, and acceleration in [38–40]. We consider the

assumption that only some of the vehicles (at least one) know

the information of the target, and make the first attempt to

solve this problem under this assumption. Once some vehicles

need to estimate the information of the target, the stability of

the resulting closed-loop multi-vehicle system becomes more

complicated. It turns out not easy to find suitable Lyapunov

function candidates as the existing works did. Motivated by

[29], we use the averaging system theory and analyze the

trajectory of the averaging system, which is not a typical

method in the distributed control problems.

Remark 7: The proposed control law is distributed at the

price of resulting in globally uniformly ultimately bounded

tracking error. While in [37], only the local one was achieved.

Similar to [41], once the target is moving with a specified

velocity v0, the ultimate bound is associated with vi and ri.
In the case where vi and ri are fixed, the ultimate bound

is associated with v0. It follows from the proposed control

law (9)–(10) that the steady-state angular velocity is time-

varying and not a fixed value. Our approach is to use the

trajectory of an averaging system to approximate that of the

original closed-loop system with a first-order smallness, and

then to prove the averaging system is asymptotically stable.

Thus, as the tracking error in the steady state is not zero, the

steady-state angular velocity is not constant. Since vi and ri
are constant, and the velocity of the target v0 is time-varying,

the steady-state angular velocity must be time-varying so as

to orbit around the target while tracking the moving target.

Remark 8: This paper focuses on the case where the linear

velocities of vehicles maintain constant and are not the control

channels. We have used the angular velocity as the only control

channel for each vehicle, to deal with two objectives. The first

one is to make vehicles orbit around the target, and the second

one is to let the circular motion center of each vehicle track

the moving target. In fact, it is challenging to further achieve

a regular pattern by only using the angular velocity as the

control channel. To form a regular pattern, it may require to

use the linear velocity as the control channel, which is one of

the future topics. Moreover, if the vehicles are in the different

altitudes, the vehicles will not collide or coincide. Otherwise,

they may collide or coincide if the vehicles has the same linear

velocities and desired radii. In order to avoid this, we can

incorporate our proposed control law with the behavior-based

algorithm implemented in the experiment of [28], and use a

switched law similar to that in [28]. Based on the behavior-

based algorithm in [28], when two vehicles are going to collide

and satisfy a certain condition in the algorithm, they switch to

the controller for avoiding collision used in [28]. Then, they

switch back to our proposed control law once they do not

tend to collide. It should be noted that our proposed control

law allows each vehicle to select its own initial time, and the

obtained result is independent of the selection on initial time,

which facilitates the implementation with the switch law based

on the behavior-based algorithm in [28].

IV. SIMULATION EXAMPLE

In this section, the main result is illustrated by an simulation

example, where five vehicles (1) are required to enclose a

moving target. The values of variables in this example are in

SI units, and the units are omitted for convenience.

The topology of the network among the target (labeled 0)

and five vehicles (labeled 1–5) is described by a directed

graph Ḡ shown in Fig. 2, which satisfies Assumption 2. The

constraints of bounded angular velocity for each vehicle are

given by (2) with ωmax
1 = 1.5, ωmax

2 = 1.55, ωmax
3 =

1.6, ωmax
4 = 1.4, and ωmax

5 = 1.45. The linear velocities

of each vehicle are given by v1 = 2, v2 = 2.5, v3 = 3, v4 =
3.5, and v5 = 4. The radius of each vehicle are given by

r1 = 4, r2 = 5, r3 = 6, r4 = 7, and r5 = 8, which satisfies

ri >
vi

ωmax
i

.

The initial states of all vehicles are given by p1(t0) =
[−10 5]T, θ1(t0) = π, p2(t0) = [−5 − 10]T, θ2(t0) = − 5

6π,
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Fig. 2. The topology of the sensor graph Ḡ.
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Fig. 3. The trajectories of each vehicle i, pi, i = 1, ..., N .

p3(t0) = [5 − 15]T, θ3(t0) = 0, p4(t0) = [10 10]T, θ4(t0) =
1
6π, and p5(t0) = [−5 10]T, θ5(t0) = − 1

3π. The initial

position of the target is given by q0 = [0 0]T. The initial

values of the estimates ηi(t0) and η̇i(t0), i = 1, ..., N , are

given by η1(t0) = [2 −6]T, η̇1(t0) = [0.3 −0.25]T, η2(t0) =
[−3 8]T, η̇2(t0) = [0.35 −0.6]T, η3(t0) = [6 −1]T, η̇3(t0) =
[−0.25 0.5]T, η4(t0) = [9 3]T, η̇4(t0) = [−0.5 0.1]T, and

η5(t0) = [−1 − 5]T, η̇5(t0) = [0.1 0.3]T. Set µ = 1 and

εi = 1, and apply the proposed control law (9)–(10).

In this example, the target is moving along a trajectory

q0(t) = [0.3t 0.06t sin(6 ln(t+1))]T. It can be verified that q̇0
and q̈0 satisfy Assumption 1. The trajectories of each vehicle

and the target during 0–100s are shown in Fig. 3, and it is

shown that all vehicles converge to a moving-target enclosing

motion. Moreover, the positions of each vehicle i and the target

at t = {0, 5, 10, 20, 40, 60, 80, 100}s are shown in Fig. 4. Fig.

5 illustrates that all tracking errors ‖qi − q0‖ converge to a

small neighborhood of zero exponentially and are uniformly

ultimately bounded. Fig. 6 shows that the angular velocity of

each vehicle always satisfies the constraints (2).

Then, we show that by decreasing the ratio ri
vi

, the ultimate

bounds of the tracking errors ‖qi − q0‖ can be smaller. Fig.

7 shows the tracking errors ‖qi − q0‖ with smaller ri, i.e.,

r1 = 2.5, r2 = 3.125, r3 = 3.75, r4 = 4.375, and r5 = 5,

and Fig. 8 shows the tracking errors ‖qi− q0‖ with larger vi,
i.e., v1 = 3.2, v2 = 4, v3 = 4.8, v4 = 5.6, and v5 = 6.4.

−10 0 10 20 30
−15

−10

−5

0

5

10

X(m)

Y
(m

)

t=0 s

−10 0 10 20 30

−10

−5

0

5

10

15

X(m)

Y
(m

)

t=5 s

0 10 20 30

−10

−5

0

5

10

X(m)

Y
(m

)

t=10 s

0 10 20 30
−10

−5

0

5

X(m)

Y
(m

)

t=20 s

0 10 20 30
−10

−5

0

5

X(m)

Y
(m

)

t=40 s

0 10 20 30
−10

−5

0

5

X(m)

Y
(m

)

t=60 s

0 10 20 30
−5

0

5

10

X(m)

Y
(m

)

t=80 s

0 10 20 30

−5

0

5

10

X(m)

Y
(m

)

t=100 s

target vehicle 1 vehicle 2 vehicle 3 vehicle 4 vehicle 5

Fig. 4. The positions of each vehicle i, pi, i = 1, ...,N , at some instants.

It is obvious that the ultimate bounds in Figs. 7 and 8 are

smaller than those in Fig. 5.

Finally, we consider the case where the target is stationary at

q0 = [0 0]T. The trajectories of each vehicle during 0–60s are

shown in Fig. 9, and it is shown that all vehicles converge to

enclosing the target. Fig. 10 validates that the tracking errors

‖qi − q0‖ converge to 0. Fig. 11 illustrates that the angular

velocity of each vehicle always satisfies the constraints (2).

The effectiveness of our proposed controllers is illustrated

by these simulation results, and main result is also validated.

V. CONCLUSION

In this paper, we have studied the moving-target enclosing

control problem of multiple unicycle-type vehicles with con-

stant linear velocities. The topology of the network among the

target and vehicles is described by a directed graph containing

a spanning tree, which allows the information of the target is

only known to some of the vehicles. A distributed dynamic

control law has been developed, and it only requires each

vehicle to use the information of itself and its neighbors. It

has been shown that the tracking error with respect to the

moving-target enclosing motion approaches zero with first-

order approximation.

For the future work, we will focus on not only the im-

plementation of the proposed control law for multiple mobile
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Fig. 5. The tracking error of each vehicle i, ‖qi − q0‖, i = 1, ..., N .
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Fig. 6. The angular velocity of each vehicle i, ωi, i = 1, ...,N .
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Fig. 7. The tracking error of each vehicle i, ‖qi − q0‖, with smaller ri.

wheeled robots, but also a new controller design which makes

the tracking errors converge to zero under some certain as-

sumptions. We will take into account the collision avoidance

for networked vehicles in the same altitude. Besides, we will

consider the case where the linear velocity is also a control

input and will develop a controller for both linear and angular

velocities to achieve both the circular motion and the position

distribution around a moving target.

APPENDIX A

PROOF OF PROPOSITION 3

For an instant t ≥ t0, ∀t0 ≥ 0, we have

‖q̃i(t)‖ = ‖q̃i(t0)e−k(εi)(t−t0) −
∫ t

t0

ek(εi)(τ−t)

× (k(εi)η̃i(τ) + ˙̃ηi(τ))dτ‖
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Fig. 8. The tracking error of each vehicle i, ‖qi − q0‖, with larger vi.
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Fig. 9. The trajectories of each vehicle i, pi, i = 1, ...,N .
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Fig. 10. The tracking error of each vehicle i, ‖qi − q0‖, i = 1, ...,N .
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Fig. 11. The angular velocity of each vehicle i, ωi, i = 1, ...,N .
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≤ ‖q̃i(t0)‖‖e−k(εi)(t−t0)‖ −
∫ t

t0

‖ek(εi)(τ−t)‖

× (‖k(εi)η̃i(τ) + ˙̃ηi(τ)‖)dτ

≤ ‖q̃i(t0)‖e−εi(t−t0) + e−εit

∫ t

t0

eεiτ

× (εi‖η̃i(τ)‖ + ‖ ˙̃ηi(τ)‖)dτ. (48)

Since [ηT

i(t) η̇T

i(t)]
T converges to [qT

0(t) vT

0(t)]
T exponen-

tially, there exist positive constants α, β, α′, and β′

such that ‖η̃i(t)‖ ≤ α‖η̃i(t0)‖e−β(t−t0) and ‖ ˙̃ηi(t)‖ ≤
α′‖ ˙̃ηi(t0)‖e−β′(t−t0), for all [η̃T

i(t0)
˙̃ηT

i(t0)]
T ∈ R

4, ∀t ≥ t0.

Then, (48) becomes

‖q̃i(t)‖ ≤ ‖q̃i(t0)‖e−εi(t−t0) + αεie
βt0−εit

∫ t

t0

e(εi−β)τdτ

+ α′eβ
′t0−εit

∫ t

t0

e(εi−β′)τdτ. (49)

Note that if εi = β, eβt0−εit
∫ t

t0
e(εi−β)τdτ = e−εi(t−t0)(t −

t0), otherwise eβt0−εit
∫ t

t0
e(εi−β)τdτ = e−β(t−t0)−e−εi(t−t0)

εi−β
.

Thus, we can conclude from (49) that q̃i(t) converges to 0

exponentially as t→ ∞.

The proof is thus completed.
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