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Abstract This paper studies leader-follower formation control of networked nonholonomic vehicles of unicycle

type. Each vehicle is subject to the velocity constraints consisting of saturated angular velocity and bounded

linear velocity with positive-minimum value. Each vehicle is allowed to use its local coordinate frame, and

the network topology is described by a directed graph containing a spanning tree. Two dynamic control laws

satisfying the velocity constraints are developed respectively, such that the leader-follower formation defined

in local coordinate frames can be achieved in two cases. The proposed control laws only require each vehicle

to use the information of its neighbors in the network via local measurements and communication. Finally,

effectiveness is illustrated by simulation results of an example.
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1 Introduction

Distributed multi-agent coordination has been an active topic since the last decade [1, 12]. Due to the

rapid development of technology on unmanned vehicles, such as autonomous underwater vehicles (AUVs),

unmanned aerial vehicles (UAVs), mobile wheeled robots (MWRs), tethered space robots (TSRs) [5],

formation control of multi-vehicle systems has attracted much research interest, see [2, 8, 11, 17, 19] and

the reference therein. In particular, many works focus on vehicles of unicycle type [6], since unicycle can

be used to describe the simplified model of a UAV and an MWR [13]. In practice, the linear velocity

and angular velocity of a vehicle is bounded due to the thrust limitations. Besides, many vehicles are

subject to the stall condition such that they need to maintain a positive-minimum linear velocity, e.g., a

fixed-wing UAV [14]. Thus, it is of practical meaning to take into account these velocity constraints in

formation control of vehicles.

One fundamental formation control problem is to make each follower vehicle maintain a desired relative

position to the leader and follow the leader’s motion. Several works studied this leader-follower formation

control problem of vehicles subject to the velocity constraints. This problem reduces to trajectory tracking

control problem when only one follower is considered and the desired relative position equals zero. To
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address the velocity constraints, the authors in [14] developed a controller by using constrained control

Lyapunov functions. In [4], an additive uncertainty in vehicle dynamics was considered. Some works

studied multiple vehicles and considered the case where the desired relative position to the leader is

defined in inertial frame. In [9] and [10], the authors studied vehicles under static and time-varying

relative position sensor digraphs respectively. It was shown that the constraint of positive-minimum linear

velocity can be satisfied and broadcast communication was required for the leader to send its information

to all followers. In [18], the proposed control law only required each vehicle to use local information and

information from its neighbors, and all aforementioned velocity constraints can be satisfied. However, an

inertial frame implies a common reference direction for all vehicles. For vehicles with only local coordinate

frames, the authors in [3] and [15] studied the case with only one follower vehicle. It was shown in [3]

that the follower can stay in an arc of the circle centered in the leader’s frame while the leader moves.

In [15], the follower vehicle was made to converge to a desired relative position defined in the leader’s

frame when the linear velocity of leader is an unknown constant. In [7], the authors studied multiple

vehicles under a network of which the topology is modeled by a directed acyclic graph. It was shown

that the formation tracking errors can only converge to a neighborhood of zero.

In this paper, we propose a distributed dynamic control law for unicycle-type vehicles with velocity

constraints and local coordinate frames, such that the leader-follower formation can be achieved in two

cases. Each follower only uses the information of its neighbors in a network by local measurements and

communication. The network topology is described by a directed graph containing a spanning tree. The

velocity constraints including the constraint of positive-minimum linear velocity are taken into account.

Different from [9, 10, 18], the desired leader-follower formation is described by relative positions defined

in leader’s coordinate frame.

The main contributions of this work can be summarized into three aspects. First, the proposed control

law allows vehicles with velocity constraints to use local coordinate frames, such that leader-follower

formation can be achieved in two cases. Compared with [9, 10, 18], vehicles are not required to share a

common reference direction. Second, compared with [7], the network topology is not limited to a directed

acyclic graph and the formation tracking errors can converge to zero in two cases. Third, compared

with [15], multiple followers instead of only one follower are considered, and the linear velocity of leader

is allowed to be time-varying. Besides, the relative heading angles with respect to the leader can converge

to zero.

The rest of this paper is organized as follows. Section 2 presents the problem formulation and a

technical lemma. In Section 3, distributed formation control laws are proposed and stability analysis of

the closed-loop systems is presented. Section 4 shows simulation results of illustrative examples, which

is followed by the conclusions in Section 5.

2 Preliminaries

2.1 Problem Formulation

Consider a group of N + 1 nonholonomic vehicles of unicycle type. The kinematic model of vehicle i is

described by:

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi, i = 0, 1, ..., N, (1)

where pi := [xi yi]
T ∈ R

2 is the absolute position and θi ∈ R is the heading angle in the inertial frame.

vi ∈ R and ωi ∈ R are the linear velocity and angular velocity respectively, which are regarded as the

control inputs. Note that θi and θi + 2Kiπ with Ki ∈ Z represent the same orientation in practice.

The following physical velocity constraints [14] of each vehicle are considered:

vi ∈ [vmin, vmax], vmax > vmin > 0, (2)

ωi ∈ [−ωmax, ωmax], ωmax > 0. (3)
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Fig. 1 Illustration of the local coordinate frame.

The group of vehicles contains one uncontrolled vehicle labeled 0, and it is called leader. The others

labeled i, i = 1, ..., N , are followers. The leader which decides the group motion satisfies the following

assumption:

Assumption 1. v0(t) and ω0(t) are bounded, i.e., v0(t) ∈ [v, v], ω0(t) ∈ [−ω, ω], ∀t > t0, where v, v,

and ω are known constants satisfying [v, v] ⊆ [vmin, vmax] and [−ω, ω] ⊆ [−ωmax, ωmax].

In practice, the acceleration of a vehicle is bounded and thus the following assumption is made:

Assumption 2. v̇0(t) exists and is bounded for all t > t0.

Each vehicle only has access to the information of its neighbors in a network. The network topology is

modeled by a directed graph Ḡ described as follows. First, a directed graph G = {O, E} is used to model

the network among N followers. The directed graph G consists of a finite set of nodes O = {1, ..., N}
representing N follower vehicles, and a set of edges E ⊆ {(j, i) : j 6= i, i, j ∈ O}, containing directed edges

from node j to node i. Then, combining G and node 0 (leader) yields the directed graph Ḡ = {Ō, Ē},
where Ō = O ∪ {0}, and Ē = E ∪ {(0, i)}, i ∈ O. A directed edge (j, i), j, i ∈ Ō, means that the

information of vehicle j is available to vehicle i. Node j is a neighbor of node i if (j, i) ∈ E , and a set

Ni ⊆ O denotes all neighbors of node i. Define aij = 1 if (j, i) ∈ Ē , otherwise aij = 0, and denote the

Laplacian matrix of Ḡ by L̄. The following assumption is made on the directed graph Ḡ:
Assumption 3. The directed graph Ḡ contains a directed spanning tree with node 0 being the root.

The network among vehicles is physically set up by the onboard sensor and communication device of

each vehicle. Different from [9,10,18], we assume that vehicles do not have a common reference direction.

Thus, the relative position pi − pj , j ∈ N̄i, and the heading angle θi cannot be measured. In this case,

each vehicle uses its local coordinate frame, i.e., the Frenet-Serret frame, see Fig. 1 for illustration. Then,

pj and θj measured in the coordinate frame of vehicle i can be expressed as

pi
j := [xi

j yij ]
T = R(θi)(pj − pi), θij = θj − θi, (4)

respectively, where R(·) =
[

cos(·) sin(·)
− sin(·) cos(·)

]

.

The leader-follower formation considered in this paper is defined in the local coordinate frames. The

objective is to design a controller for vehicle i, i = 1, ..., N , such that pi
0 converges to pi

0 + h0i and θi0(t)

converges to 2Kiπ with Ki ∈ Z, where the constant vector h0i denotes the desired relative position to the

leader in the local coordinate frame of vehicle i. By default, h00 = 0. Note that θi0 = 0 and θi0 = 2Kiπ

represent the same orientation, and θij is generally measured in (−2π, 2π) in practice.

Now, the leader-follower formation control problem considered in this paper is formally stated as

follows:

Problem 1. Consider N follower vehicles and a leader vehicle. Given a directed graph Ḡ, for all initial
states pi

0(t0) ∈ R
2 and θi0(t0) ∈ (−2π, 2π), i = 1, ..., N , ∀t0 > 0, find a dynamic control law in the form of

[ωi vi]
T
= ̺(ρi

0,p
i
j , θ

i
j), ρ̇i

0 = κ(ρi
0,ρ

j
0,p

i
j , θ

i
j), j ∈ N̄i, (5)
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such that

lim
t→∞

pi
0(t) + h0i = 0, lim

t→∞
θi0(t) = 0, i = 1, ..., N, (6)

where ρi
0, to be designed later, is an estimate of the information associated with the leader, functions

̺(·) and κ(·) are sufficiently smooth, and ̺(·) is properly bounded.

2.2 Technical Lemmas

The following lemma can be referred to as a comparison principle for vectorial differential equations. Say

that x 6 y for x, y ∈ R
n if the entries of x and y satisfy xi 6 yi, i = 1, ..., n.

Lemma 1. Consider the vectorial differential equation ẏ = f(t,y) with y = [y1, ..., yn]
T ∈ R

n and

f(t,y) = [f1(t,y), · · · , fn(t,y)]T, where fi(t,y) is differentiable in t and locally Lipschitz in y, for all

t > t0 and all y ∈ Ψ with Ψ being any subset of Rn. Let [t0, T ) (T could be infinity) be the maximal

interval of existence of the solution y(t) and suppose y(t) ∈ Ψ for all t ∈ [t0, T ). Let x(t) ∈ R
n be a

continuous function of which the upper right-hand derivative D+x(t) satisfy the differential inequality

D+x(t) 6 f(t,x(t)), x(t0) 6 y(t0), (7)

with x(t) ∈ Ψ for all t ∈ [t0, T ). If for any i 6= j,

∂fi(t,x)

∂xj

> 0, (8)

then x(t) 6 y(t) for all t ∈ [t0, T ).

The proof is given in Appendix A.

3 Main Results

In this section, we solve Problem 1 in two cases. For each case, a distributed dynamic control law is

proposed. In the first case, the leader vehicle is assumed to move in a linear motion. In the second case,

this assumption is removed but the desired relative position h0i is limited.

3.1 Case 1: A Leader Moving in a Linear Motion

In this case, we assume that the leader is moving in a linear motion. As in [18], the desired relative

position h0i is not known to vehicle i, and each follower vehicle i only knows a constant vector hji,

j ∈ N̄i, which denotes the desired relative position to vehicle j in the local coordinate frame of vehicle i.

The assumption on Case 1 is summarized as follows.

Assumption 4. The angular velocity of the leader satisfies ω0(t) = 0, ∀t > t0. Each follower vehicle i

does not know h0i and only knows hji, j ∈ N̄i.

First, define the tracking error pei = [xei yei]
T as

pei = pi
0 +R(−θi0)h0i, θei = θi0. (9)

Taking its time derivative yields the following error dynamics:

ṗei = ωiSpei + v0

[

cos θei

sin θei

]

− viQ, θ̇ei = −ωi, (10)

where S =

[

0 1

−1 0

]

and Q =

[

1

0

]

.

To solve Problem 1, it suffices to show that pe = col(pe1, ...,peN ) and θe = col(θe1, ..., θeN ) converge

to zero as t → ∞.
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However, pei, θ
i
0, and v0 are not known to the follower vehicles. In this case, set an internal state

[p̂T

ei θ̂ei v̂i]
T for each vehicle i. Let p̂ei, θ̂ei, and v̂i be the estimate of pei, θei, and v0 for vehicle i

respectively.

Then, we propose a dynamic control law for each follower vehicle i as follows.

vi = sat(v̂i, v, v) +
k1x̂ei

√

1 + p̂T

eip̂ei

, (11)

ωi =
k3 sin

θ̂ei
2

√

1 + p̂T

eip̂ei

+
k2 sat(v̂i, v, v)(ŷei cos

θ̂ei
2 − x̂ei sin

θ̂ei
2 )

√

1 + p̂T

eip̂ei

, (12)

˙̂pei = ωiSp̂ei + v̂i[cos θ̂ei sin θ̂ei]
T − viQ+ µ

∑

j∈N̄i

aij(R(−θij)p̂ej − p̂ei + pi
j +R(−θ̂ei)hji), (13)

˙̂
θei = −ωi + µ

∑

j∈N̄i

aij(θ̂ej − θ̂ei + θij), (14)

˙̂vi =
1

∑

j∈Ni

aij

∑

j∈N̄i

aij( ˙̂vj + µ(v̂j − v̂i)), (15)

where µ is any positive constant, k1, k2, and k3 are positive constants satisfying

k1 6 min(vmax − v, v − vmin), 2k2v + k3 6 ωmax. (16)

Function z = sat(a, b, c) : R3 7→ R is defined as z = a, if c 6 a 6 b; z = b, if a > b and z = c, if a < c.

The initial state [p̂T

ei(t0) θ̂ei(t0) v̂i(t0)]
T can be arbitrarily selected in R

2×R×R. By default, p̂e0 = [0 0]T

and [θ̂e0 v̂0]
T = [0 v0]

T.

To implement dynamic control law (11)–(15), the onboard sensors of vehicle i is required to measure

the relative states pi
j and θij in its local coordinate frame, and the communication device of vehicle i is

used to receive the information [p̂T

ej θ̂ei v̂i]
T from its neighbors. The design of (13)–(15) are based on the

information of vehicle i and the information from its neighbors, and thus can be viewed as a distributed

observer. Then, dynamic control law (11)–(15) can be described in the form of (5).

Before the main result of Case 1 is presented, a property of the distributed observer (13)–(15) is given

in the following proposition. This property is required in establishing the stability analysis for the main

result of Case 1.

Proposition 1. Consider the distributed observer (13)–(15), a leader vehicle and directed graph Ḡ.
Under Assumptions 1–4, for any initial states [p̂T

ei(t0) θ̂ei(t0) v̂i(t0)]
T, i = 1, ..., N , ∀t0 > 0, each

[p̂T

ei(t) θ̂ei(t) v̂i(t)]
T converges to [pT

ei(t0) θ
i
0(t) v0(t)]

T exponentially as t → ∞.

Proof. Define

p̃ei := [x̃ei ỹei] = p̂ei − pei, θ̃ei = θ̂ei − θei, ṽi = v̂i − v0. (17)

Note that the Laplacian matrix L̄ of the digraph Ḡ can be partitioned as follows:

L̄ =

(

0 0

−A01N H

)

, (18)

whereA0 = diag(a10, ..., aN0). By Assumption 3 and Lemma 1 in [16],H is nonsingular and all eigenvalues

of H have positive real parts. Then, −H is Hurwitz and there exist α1, β1 > 0 such that

‖e−µHs‖ 6 α1e
−β1s, ∀s > 0. (19)

Using (14) and (17) gives

˙̃
θei = µ

∑

j∈N̄i

aij(θ̃ej − θ̃ei). (20)
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Denoting θ̃e = col(θ̃e1, ..., θ̃eN ), N systems in the form of (20) can be rewritten into the following compact

form:

˙̃
θe = −µH θ̃e. (21)

Thus, θ̃e(t) = e−µH(t−t0)θ̃e(t0) and it follows from (19) that θ̃e(t) converges to zero as t → ∞.

Using (15) and (17) yields

∑

j∈Ni

aij( ˙̃vj − ˙̃vi) = −µ
∑

j∈Ni

aij(ṽj − ṽi). (22)

Defining δi =
∑

j∈N̄i
aij(ṽj − ṽi), (22) becomes

δ̇i = −µδi, i = 1, ..., N. (23)

Then, denote ṽ = col(ṽ1, ..., ṽN ), and we can obtain

[δ1, ..., δN ]
T
= µHṽ. (24)

It follows from (23) that δi(t) = e−(t−t0)δi(t0). Thus, ṽ converges to zero exponentially as t → ∞.

Next, it follows from

R(−θij)pej + pi
j +R(−θ̂ei)hji = pei, (25)

(10), (13), and (17) that

˙̃pei = ωiSp̃ei + µ
∑

j∈N̄i

aij(R(−θij)p̃ej − p̃ei) +∆i, (26)

where ∆i is defined as

∆i = (v̂i − vi)

[

cos θ̂ei

sin θ̂ei

]

+ vi

[

cos θ̂ei − cos θei

sin θ̂ei − sin θei

]

. (27)

Consider a Lyapunov function candidate

V (p̃ei) =
1

2
p̃T

eip̃ei,

and taking its time derivative along the trajectories of (26) leads to

V̇ (p̃ei) =
1

2
ωi(S + ST)p̃ei +

1

2
(p̃T

ei∆i +∆T

i p̃ei) + µ
∑

j∈N̄i

aij(
1

2
(p̃T

eiR(θji )p̃ej + p̃T

ejR(θji )p̃ei)− p̃T

eip̃ei)

6 ‖∆i‖‖p̃i
0‖+ µ

∑

j∈N̄i

aij(‖p̃ej‖‖p̃ei‖ − ‖p̃ei‖2). (28)

Define p̄ei = ‖p̃ei‖. Since V (p̃ei) = V (p̄ei) =
1
2 p̄

2
ei, it follows from (28) that the right time derivative of

p̄ei satisfies

D+p̄ei 6 ‖∆i‖+ µ
∑

j∈N̄i

aij(p̄ej − p̄ei). (29)

Denote p̄e = col(p̄e1, ..., p̄eN ) and ∆̄ = col(‖∆1‖, ..., ‖∆N‖). Then, N inequalities in the form of (29)

can be written in the following compact form:

D+p̄e 6 −µHp̄e + ∆̄. (30)



Author version of DOI: 10.1007/s11432-016-9094-1 Yu X, et al. Sci China Inf Sci 7

It follows from (30) and Lemma 1 that

p̄e(t) 6 e−µH(t−t0)p̄e(t0) +

∫ t

t0

e−µH(t−τ)∆̄(τ)dτ.

Since v̂i(t) converges to v0(t) exponentially and θ̂ei(t) → converges to θei(t) exponentially as t → ∞,

∆i(t) converges to zero exponentially as t → ∞, i.e., there exist α2, β2 > 0 such that ‖∆̄‖ 6

α2e
−β2(t−t0)‖∆̄(t0)‖, ∀t0 > 0.

Then, by (19), we have

‖p̄e(t)‖ 6 ‖e−µH(t−t0)‖‖p̄e(t0)‖+
∫ t

t0

‖e−µH(t−τ)‖‖∆̄(τ)‖dτ

6 α1‖p̄e(t0)‖e−β1(t−t0) +

∫ t

t0

α1α2e
−β1(t−τ)−β2(τ−t0)‖∆̄(t0)‖dτ

6 α1‖p̄e(t0)‖e−β1(t−t0) + α1α2‖∆̄(t0)‖eβ2t0−β1t

∫ t

t0

e(β1−β2)τdτ.

It follows that if β1 = β2,

‖p̄(t)‖ 6 α1‖p̄(t0)‖e−β1(t−t0) + α1α2‖∆̄(t0)‖e−β1(t−t0),

otherwise it follows that

‖p̄(t)‖ 6 α1‖p̄(t0)‖e−β1(t−t0) +
α1α2

β1 − β2
‖∆̄(t0)‖(e−β1(t−t0) − e−β2(t−t0)).

Thus, p̄e(t), i.e., each ‖p̃eit)‖, converges to zero exponentially as t → ∞. This completes the proof.

Now, we are ready to present the main result of Case 1.

Theorem 1. Problem 1 is solved by dynamic control law (11)–(15) under Assumptions 1–4, while

velocity constraints (2) and (3) are satisfied.

Proof. Define

v̄i = sat(v̂i, v, v)− v0, (31)

and let

χi = [pei θei]
T, ξi = [p̃ei θ̃ei v̄i ]

T. (32)

The closed-loop system consisting of (10) and (11)–(15) can be written in the form of

χ̇i = f(χi, v0(t)) + g(χi, ξi, v0(t)), (33)

with

f(χi, v0(t)) =









ωeiyei − vei + v0 cos θei

−ωeixei + v0 sin θei

−ωei









, g(χi, ξi, v0(t)) =









yei(ωi − ωei)− (vi − vei)

−xei(ωi − ωei)

−(ωi − ωei)









, (34)

where

ωei =
k2v0(yei cos

θei
2 − xei sin

θei
2 ) + k3 sin

θei
2

√

1 + pT

eipei

, (35)

vei = v0 +
k1xei

√

1 + pT

eipei

. (36)
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Then, Corollary 2.1 in [18] can be used to show that system (33) is uniformly stable at χi = 0 for all

χi ∈ X with

X = {(x, y, θ)|x ∈ R, y ∈ R, θ ∈ (−2π, 2π)}. (37)

To show conditions (i)–(iii) in [18, Corollary 2.1] are satisfied, the remainder of the proof can be divided

into the following three steps.

Step 1: Prove that the nominal system χ̇i = f(χi, v0(t)) is uniformly stable at χi = 0 for all χi ∈ X .

Step 2: Show that ξ(t) converges to zero exponentially as t → 0.

Step 3: Verify that g(χi, ξi, v0(t)) satisfies

‖g(χi, ξi, v0(t))‖ 6 ‖ξi‖Θ1(‖ξi‖) + ‖ξi‖‖χi‖Θ2(‖ξi‖),

where Θ1, Θ2 : R>0 7→ R>0 are continuous functions.

By Proposition 1, ξ(t) converges to zero exponentially as t → 0, which completes the proof of Step 2.

The proofs of Step 1 and Step 3 can be done by mimicking the proof of Theorem 3.1 in [18].

Finally, since v0 and ω0 satisfy Assumption 1 and x̃ei√
1+p̂

T
ei
p̂ei

, ỹei√
1+p̂

T
ei
p̂ei

∈ (−1, 1), then k1, k2 and k3

can be tuned by (16). Then, velocity constraints (2)–(3) can be satisfied.

Remark 1. The design of the distributed observer (13)-(14) is different from that in [18] since a

common reference direction is not available and pj −pi, θi, θj cannot be measured. The stability analysis

for proving Proposition 1 can be established by using Lemma 1 which is not needed in the proof of Lemma

3.1 in [18].

3.2 Case 2: Limited Desired Relative Position

In this case, the assumption that ω0(t) = 0, ∀t > t0, is not required, while the desired relative position

h0i needs to satisfy certain condition. In this case, the geometry of the formation cannot be arbitrarily

set. Unlike Case 1, h0i is assumed to be known to vehicle i. The assumption on Case 2 is summarized

as follows.

Assumption 5. The desired relative position h0i is a constant vector in the form of h0i = [0 ri]
T, and

is known to the follower vehicle i.

First, define the tracking error pei = [xei yei]
T as

pei = pi
0 + h0i, θei = θi0. (38)

Taking its time derivative yields the following error dynamics:

ṗei = ωiSpei + v0

[

cos θei

sin θei

]

− viQ− ωiriQ, θ̇ei = ω0 − ωi. (39)

As in Case 1, we are aimed to show that pe = col(pe1, ...,peN ) and θe = col(θe1, ..., θeN ) converge to

zero as t → ∞. Similar to that in Case 1, an internal state [p̂T

ei θ̂ei v̂i ω̂i]
T is set for each vehicle i. Let

p̂ei, θ̂ei, v̂i, and ω̂i :=
˙̂
θei + ωi be the estimate of pei, θei, v0, and ω0 for vehicle i respectively.

Then, we propose a dynamic control law for each follower vehicle i as follows.

vi = sat(v̂i, v, v) +
k1ix̂ei

√

1 + p̂T

eip̂ei

− wiri, (40)

ωi = sat(ω̂i, ω,−ω) +
k3 sin

θ̂ei
2

√

1 + p̂T

eip̂ei

+
k2 sat(v̂i, v, v)(ŷei cos

θ̂ei
2 − x̂ei sin

θ̂ei
2 )

√

1 + p̂T

eip̂ei

, (41)

˙̂pei = ωiSp̂ei + v̂i[cos θ̂ei sin θ̂ei]
T − viQ− ωiriQ

+ µ
∑

j∈Ni

aij(R(−θij)p̂ej − p̂ei + pi
j + h0i −R(−θij)h0j), (42)
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˙̂
θei =

1
∑

j∈Ni

aij

∑

j∈Ni

aij((ω̂j − ωi) + µ(θ̂ej − θ̂ei + θij)), (43)

˙̂vi =
1

∑

j∈Ni

aij

∑

j∈Ni

aij( ˙̂vj + µ(v̂j − v̂i)), (44)

where µ is any positive constant, and k1i, k2, and k3 are positive constants satisfying

k1i 6 min(vmax − v − ωri, v − vmin − ωri), 2k2v + k3 6 ωmax − ω. (45)

The initial state [p̂T

ei(t0) θ̂ei(t0) v̂i(t0) ω̂i(t0)]
T can be arbitrarily selected in R

2 × R × R × R. By

default, p̂e0 = [0 0]T and [θ̂e0 v̂0 ω̂0]
T = [0 v0 ω0]

T. The implementation of dynamic control law (40)–(44)

is similar to that in Case 1, and additionally requires vehicle j to send constant rj and information ω̂i to

vehicle i. The proposed control law also can be described in the form of (5).

To establish the main result of Case 2, a property of the distributed observer (42)–(44) is needed and

is given in the following proposition.

Proposition 2. Consider the distributed observer (42)–(44), a leader vehicle and directed graph Ḡ.
Under Assumptions 1–3 and 5, for any initial states [p̂T

ei(t0) θ̂ei(t0) v̂i(t0) ω̂i(t0)]
T, i = 1, ..., N , ∀t0 > 0,

each [p̂T

ei(t) θ̂ei(t) v̂i(t) ω̂i(t)]
T converges to [pT

ei(t0) θ
i
0(t) v0(t) ω0]

T exponentially as t → ∞.

Proof. Define

p̃ei := [x̃ei ỹei] = p̂ei − pei, θ̃ei = θ̂ei − θei, ṽi = v̂i − v0, ω̃i = ω̂i − ω0. (46)

Using (43) and (46) yields

∑

j∈Ni

aij(
˙̃θej − ˙̃θei) = −µ

∑

j∈Ni

aij(θ̃ej − θ̃ei). (47)

Defining δi =
∑

j∈Ni
aij(θ̃ej − θ̃ei), (47) becomes

δ̇i = −µδi, i = 1, ..., N. (48)

Then, denote θ̃e = col(θ̃e1, ..., θ̃eN ), and we can obtain

[δ1, ..., δN ]
T
= µH θ̃e. (49)

It follows from (48) that δi(t) = e−(t−t0)δi(t0). Thus, θ̃e converges to zero exponentially as t → ∞.

Denote ω̂ = col(ω̂1, ..., ω̂N). With ω̂0 = ω0, we have
[

δ̇1, ..., δ̇N

]T

= µH(ω̂ − 1N ⊗ ω0). (50)

By (23), δ̇i(t) converges to zero exponentially as t → ∞. Then, ω̂ converges to 1N ⊗ ω0(t) exponentially

as t → ∞. Similarly, we can prove that v̂i(t) converges to v0(t) exponentially as t → ∞.

Next, using (39), (42), (46), and R(−θij)pej + pi
j + h0i −R(−θij)h0j = pei gives

˙̃pei = ωiSp̃ei + µ
∑

j∈N̄i

aij(R(−θij)p̃ej − p̃ei) +∆i, (51)

which is the same as (26). The remainder of the proof can be referred to the proof of Proposition 1.

Now, the main result of Case 2 is stated as follows.

Theorem 2. Problem 1 is solved by distributed dynamic control law (40)–(44) under Assumptions 1–3

and 5. Moreover, if

ri < min(
vmax − v

ω
,
v − vmin

ω
), (52)

velocity constraints (2)–(3) are satisfied.
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Similar to Case 1, the proof of Theorem 2 can be done as follows.

Proof. Define

v̄i = sat(v̂i, v, v)− v0, ω̄i = sat(ω̂i, ω, ω)− ω0, (53)

and let

χi = [pei θei]
T, ξi = [p̃ei θ̃ei v̄i ]

T. (54)

The closed-loop system consisting of (10) and (11)–(15) can be written in the form of

χ̇i = f(χi,γ(t)) + g(χi, ξi,γ(t)), (55)

with γ := [v0 ω0]
T,

f(χi,γ(t)) =









ωeiyei − vei + v0 cos θei

−ωeixei + v0 sin θei

ω0 − ωei









, g(χi, ξi,γ(t)) =









yei(ωi − ωei)− (vi − vei)

−xei(ωi − ωei)

−(ωi − ωei)









, (56)

where

ωei = w0 +
k2v0(yei cos

θei
2 − xei sin

θei
2 ) + k3 sin

θei
2

√

1 + pT

eipei

, (57)

vei = v0 +
k1ixei

√

1 + pT

eipei

− ωeiri. (58)

Then, the proof to show that system (55) is uniformly stable at χi = 0 for all χi ∈ X with X =

{(x, y, θ)|x ∈ R, y ∈ R, θ ∈ (−2π, 2π)}, is the same as that in the proof of Theorem 1.

Finally, noting that v0 and ω0 satisfy Assumption 1 and x̃ei√
1+p̂

T
ei
p̂ei

, ỹei√
1+p̂

T
ei
p̂ei

∈ (−1, 1), if ri satisfies

(52), the parameters k1i, k2 and k3 can be tuned based on (45) such that velocity constraints (2)–(3) are

satisfied.

Remark 2. The reason that Problem 1 is solved only in these two cases is given as follows. In a general

case where h0i is not limited and ω0(t) = 0, ∀t > t0, is not satisfied, it is not possible to simultaneously

make xei, yei, and θei converges to zero. Mathematically, if ω0(t) = 0, ∀t > t0, is not satisfied, the error

dynamics in Case 1, i.e., (10) becomes

ṗei = ωiSpei + v0

[

cos θei

sin θei

]

− viQ− ω0SR(−θi0)h0i, θ̇ei = −ωi. (59)

Even if [xei θei]
T converges to zero, yei cannot converge to zero accordingly. This fact can be observed

from the dynamics of yei, i.e.,

ẏei = −ωixei + v0 sin θei + ω0[cos θei sin θei]h0i. (60)

When [xei θei]
T = 0, (60) becomes

ẏei = ω0[1 0]h0i. (61)

There exists no control channel in the error dynamics (61), which results from the nonholonomic constraint

ẋi sin θi − ẏi cos θi = 0 in each vehicle (1). It follows from (61) that ẏei = 0 only if [1 0]h0i = 0, which

coincides the assumption h0i = [0 ri]
T in Case 2.

Although ω0 is not limited and the geometry of the formation is arbitrarily set in [18], yet it can be

observed from (6) that the objective lim
t→∞

pi
0(t) + h0i = 0 is not as the same as that in [18]. Note that

in [18], a common reference direction is required for all vehicles, and the result in [18] cannot applied to

vehicles with local coordinate frames.
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2 3 4 

0 

1 5 

Fig. 2 The directed graph Ḡ describing the network among vehicles.

Remark 3. In [15], formation of only one follower was studied, and the objective to make θei converge to

zero was not considered. While we take into account multiple followers and the objective lim
t→∞

θi0(t) = 0.

Besides, v0 is allowed to be time-varying and the upper bound of vi can be guaranteed. In [7], the

network topology was assumed to be a directed acyclic graph and it was shown that the tracking error

pei converges to a neighborhood of zero. While graph Ḡ satisfying Assumption 3 includes graphs defined

in [7] as a special case, and the proposed control law can make pei converge to zero in two cases.

Remark 4. The proposed control laws in this paper and those in [9, 10, 18] can be applied to the

leader-following consensus problem of vehicles by setting h0i to 0. Since a common reference direction is

not required, the result in this paper has an advantage over those in [9, 10, 18] for solving the consensus

problem.

Remark 5. In both cases, even though the follower vehicle can identify the leader, yet some followers

cannot obtain the information of the leader, since the fixed network topology is prespecified and there

exist no directed edges from the leader node to those follower nodes in Ḡ. Furthermore, in Case 1, each

follower only knows hji, j ∈ N̄i and has no knowledge of h0i. Thus, the problem in both cases cannot

be simply divided into several tracking problems of a single vehicle.

4 Illustrative Examples

In this section, we verify effectiveness of the proposed control laws (11)–(15) and (40)–(44) in the described

two cases respectively.

Consider 5 follower vehicles (labeled 1-5) which are desired to converge to the formation with respect

to a leader vehicle (labeled 0). The directed graph Ḡ is shown as in Fig. 2. The velocity constraints

are given as vi ∈ [3 − 1.8
√
2, 3 + 1.8

√
2] and ωi ∈ [−0.671, 0.671]. The bounds of the group reference

velocities are v+r = 4.5, v−r = 2 and ω+
r = 0.3. The initial states of follower vehicles, [xi(0) yi(0)]

T and

θi(0), i = 1, .., N , are listed in Table 1.

Table 1 The initial states of follower vehicles

Label [xi(0) yi(0)]
T θi(0)

1 [−40 10]T π

2 [−20 − 40]T 5π/6

3 [25 − 60]T 0

4 [50 − 0]T −2π/3

5 [50 10]T 0

In Case 1, the linear velocity and angular velocity of the leader vehicle are given as v0(t) = 3.25 −
0.25 cos0.24t and ω0(t) = 0. Based on (16), tune the design parameters k1 = 1.5, k2 = 0.0855 and k3 =

0.5. The initial state of leader is [pT

0 θ0]
T = [0 0 π/6]T. For follower vehicles, the desired relative positions

to the leader are given by [hx
01 hx

02 hx
03 hx

04 hx
05]

T = [−30 − 30 0 30 30]T and [hy
01 hy

02 hy
03 hy

04 hy
05]

T =
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Fig. 3 Trajectories of all vehicles in Case 1.
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Fig. 5 Formation tracking errors θei(t) in Case 1.
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Fig. 7 Angular velocity of each vehicle ωi(t) in Case 1.
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Fig. 8 Trajectories of all vehicles in Case 2.
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Fig. 9 Formation tracking errors ‖pei‖(t) in Case 2.
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Fig. 10 Formation tracking errors θei(t) in Case 2.
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Fig. 11 Linear velocity of each vehicle vi(t) in Case 2.
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Fig. 12 Angular velocity of each vehicle ωi(t) in Case 2.
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[0 − 30 − 30 − 30 0]T. The initial states [p̂T

ei(t0) θ̂ei(t0) v̂i(t0)]
T of follower vehicles are listed in Table 2.

Table 2 The initial states of variables in (13)–(15)

Label p̂T

ei(0) θ̂ei(0) v̂i(0)

1 [−15.51 22.86]T 0.1π 3

2 [−25.66 − 50.55]T 0.7π 3.5

3 [2.51 − 22.39]T −0.8π 4.5

4 [79.72 12.81]T 0.5π 2.5

5 [20 − 18]T 1.4π 2

Fig. 3 presents the trajectories of all vehicles during 0− 120s, which shows that the vehicles converge

to the desired formation. Fig. 4 and Fig. 5 show that the formation tracking errors pei(t) and θei(t)

converge to zero respectively. Fig. 6 and Fig. 7 show that velocity constraints (2)–(3) are always satisfied.

In Case 2, the linear velocity and angular velocity of the leader vehicle are given as v0(t) = 1.25 −
0.25 cos0.24t and ω0(t) = 0.05 cos(0.2t). Based on (45), tune the design parameters k1i = 1.5, k2 = 0.0855

and k3 = 0.5. The initial state of leader is [pT

0 θ0]
T = [0 0 π/3]T. For follower vehicles, the desired relative

positions to the leader are given by h0i = [0 ri]
T, i = 1, ..., 5, with [r1 r2 r3 r4 r5]

T = [−10 15 10 5 − 5].

The initial states [p̂T

ei(t0) θ̂ei(t0) v̂i(t0)]
T of follower vehicles are the same as listed in Table 2, and the

initial states ω̂i(t0) are [ω̂1(t0) ω̂2(t0) ω̂3(t0) ω̂4(t0) ω̂5(t0)]
T = [0.1 − 0.2 0.4 0.25 − 0.15]T.

Fig. 8 presents the trajectories of all vehicles during 0− 200s, which shows that the vehicles converge

to the desired formation. Fig. 9 and Fig. 10 show that the formation tracking errors pei(t) and θei(t)

converge to zero respectively. Fig. 11 and Fig. 12 show that velocity constraints (2)–(3) are always

satisfied.

These simulation results illustrate effectiveness of the proposed control law.

5 Conclusion

In this paper, we have developed a distributed dynamic control law for networked unicycle-type vehicles,

such that all follower vehicles with local coordinate frames converge to the desired leader-follower for-

mation in two cases, while their velocity constraints including the constraint of positive-minimum linear

velocity are always satisfied. For the future work, we will consider the internal uncertainties in the vehicle

model and/or the external disturbances.

Appendix A Proof of Lemma 1

Lemma 1 is proved by the following two steps.

Proof. Step 1: Since f(t,y) is differentiable in t and locally Lipschitz in y, then there exists a unique solution y(t) such

that ẏ = f(t,y), y(t0) = y0. For any i = 1, 2, · · · , n, if x 6 y and xi = yi at time t, then it follows from the condition
∂fi(t,x)

∂xj
> 0, ∀i 6= j that fi(t,x) 6 fi(t, y).

Step 2: Prove the lemma by contradiction. If there exist i0 and ti0 ∈ [t0, T ) such that xi0 (ti0 ) > yi0 (ti0 ), then there

must exist i, t1 ∈ [t0, T ) and δ > 0 such that xi(t1) = yi(t1), xi(t) > yi(t) for t ∈ (t1, t1 + δ) and xj(t1) 6 yj(t1) for any

j 6= i. Then, x(t1) 6 y(t1) holds. By Step 1, we have fi(t1,x(t1)) 6 fi(t1,y(t1)). Furthermore,

D+xi(t1) = lim sup
∆t→0+

xi(t1 +∆t)− xi(t1)

∆t

> lim sup
∆t→0+

yi(t1 +∆t)− yi(t1)

∆t
= ẏi(t1). (A1)

However, it follows from (7) that D+xi(t1) 6 fi(t1,x(t1)) 6 fi(t1,y(t1)) = ẏi(t1), which yields a contradiction.

The proof is thus completed.

Acknowledgements This work was supported by the Research Grants Council of the Hong Kong Special

Administrative Region of China under Project CityU/11213415.

Conflict of interest The authors declare that they have no conflict of interest.



Author version of DOI: 10.1007/s11432-016-9094-1 Yu X, et al. Sci China Inf Sci 15

References

1 Cao Y C, Yu W W, Ren W, Chen G R. An overview of recent progress in the study of distributed multi-agent

coordination. IEEE Trans Ind Inf, 2013, 9(1): 427–438.

2 Chen J, Gan M G, Huang J, Dou L H, Fang H. Formation control of multiple euler-lagrange systems via null-space-

based behavioral control. SCI CHINA Inf Sci, 2016, 59(1): 1–11.

3 Consolini L, Morbidi F, Prattichizzo D, Tosques M. Leader–follower formation control of nonholonomic mobile robots

with input constraints. Automatica, 2008, 44(5): 1343–1349.

4 Gruszka A, Malisoff M, Mazenc F. Bounded tracking controllers and robustness analysis for UAVs. IEEE Trans

Autom Control, 2013, 58(1): 180–187.

5 Huang P F, Wang D K, Meng Z J, Zhang F, Liu Z X. Impact dynamic modeling and adaptive target capturing control

for tethered space robots with uncertainties. IEEE/ASME Trans Mechatron, 2016, 21(5): 2260-2271.

6 Kolmanovsky I and McClamroch N H . Developments in nonholonomic control problems. IEEE Control Syst, 1995,

15(6): 20–36.
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