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Bearing-Only Formation Tracking Control of

Multi-Agent Systems With Local Reference Frames

and Constant-Velocity Leaders
Jianing Zhao, Xiao Yu, Xianwei Li, and Hesheng Wang

Abstract—In this paper, the bearing-only formation tracking
control problem of multi-agent systems modeled as double-
integrators in local reference frames is investigated. The sensing
topology among all agents is described by a multiply rooted
undirected graph and the autonomous leaders associated with
a common reference frame move with a constant velocity. The
proposed control law for each follower depends merely on the
relative bearings and relative orientations to its neighbors in its
local reference frame. The orientation synchronization problem
is first solved so that all orientations of the followers converge to
that of the leaders. Then, a bearing-only controller is developed
to achieve the desired moving formation. Finally, an example
illustrates the effectiveness.

Index Terms—Cooperative control, control of networks, con-
strained control.

I. INTRODUCTION

FORMATION control of multi-agent systems has attracted

much research attention recently, and the existing ap-

proaches are categorized into position-based, displacement-

based, distance-based and bearing-based schemes [1]. In par-

ticular, the bearing-based one provides much practicability,

since bearing measurements can be obtained by a passive

sensor, such as the onboard optical cameras [2].

Bearing-only formation control is merely based on the

bearing measurements of the neighbors without any auxil-

iary distance-or-other measurements or communication, which

yields many challenges [3]–[5]. In [6], the bearing rigidity

theory was put forward to solve the uniqueness problem of

a geometrical pattern with bearing constraints in an arbitrary

dimension. Besides, the angle rigidity theory was raised in

[7] to investigate the uniqueness of a formation with angle

constraints on a two-dimensional plane. Based on the notion

of bearing rigidity, many important problems such as bearing-

only formation stabilization [6], [8]–[10], bearing-based for-

mation maneuver [11]–[13] and bearing-based network lo-
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calization [14], [15] have been studied. Those bearing-only

or bearing-based formation control approaches, however, are

either only applicable to the formation with stationary targets,

or in need of the relative positions and velocities. Moreover, it

is of practical importance to investigate the case with moving

targets. The bearing-only tracking control problem of single-

integrators, double-integrators and unicycles was solved in

[16], where the control laws are designed in global reference

frames. Nonetheless, the global reference frames may not be

accessible to agents in some scenarios such as the indoor cases.

To solve the formation control problem in the absence of

global reference frames, the orientation estimation or synchro-

nization is needed. In [17], a finite-time distributed global

orientation estimation law was proposed with an auxiliary

matrix transmitted between neighboring agents via communi-

cation. In [18], a passivity-based distributed angular velocity

controller using neighbors’ relative orientations was developed

to achieve orientation synchronization in SE(3). This result

was adopted in [6] to achieve a stationary target formation.

However, the proof whether this controller is applicable to the

leader-following case is not given in [18].

This paper aims to solve the leader-following formation

tracking problem of double-integrators, and the bearing mea-

surements are measured in each follower agent’s body-fixed

local reference frame. The sensing topology among all agents

is described by a multiply rooted undirected graph in which the

roots denote the leaders. First, the orientation synchronization

is achieved so that the multi-agent systems are able to share a

common orientation. Then, a bearing-only formation tracking

control law is proposed to achieve a desired moving formation

by using the bearings measured in local reference frames.

The main contribution is summarized as follows. Firstly,

the proposed control law only requires each follower agent

to use its own local reference frame, in contrast to [16]

where all agents need to share a common reference frame,

i.e., the global reference frame. Secondly, a rigorous proof of

the asymptotic stability with locally exponential convergence

of the orientation synchronization with multiply leaders is

presented, while the convergence rate in the leader-following

case was not provided in [18].

The rest of this paper is organized as follows. The problem

formulation and some necessary preliminaries are presented

in Section II. The proposed control laws and stability analysis

are shown in Section III. The simulation results are given in

Section IV, and the conclusion is drawn in Section V.
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II. PRELIMINARIES AND PROBLEM

FORMULATION

A. Notations and Preliminaries

Consider n mobile agents in R
d, d = 2 or 3. Suppose that

the first nl ≥ 2 agents are leaders and the rest nf = n − nl

agents are followers. Let Σi, i ∈ {1, . . . , n} be the body-

fixed local reference frame, whose origin is located at the

center of agent i. Specifically, leaders are assumed to move

with a common constant velocity and thus share a common

reference frame, i.e., Σl. Denote the position, velocity in Σl

and Σi of agent i as pi, vi ∈ R
d and pii, v

i
i ∈ R

d respectively.

Throughout this paper, the superscript i is used to express the

vector quantities in Σi. Each follower agent is modeled as a

double-integrator, i.e.,

ṗii = vii , v̇ii = ui
i, (1)

where ui
i is the acceleration control input to be designed based

on the measurements in Σi.

Denote the configuration of the agents as p = [pT

1, . . . ,
pT

n]
T ∈ R

dn. The interaction among the agents is described by

a multiply rooted undirected graph G = (V , E) consisting of a

node set V = {1, . . . , n} and an edge set E = {(j, i) : j 6= i,
i, j ∈ V}. The edge (i, j) ∈ E represents that the information

of agent j can be measured by agent i. Denote the set of

neighbors of agent i as Ni = {j ∈ V : (i, j) ∈ E}. The number

of agents in set Ni is denoted as |Ni|. Let V = Vl ∪ Vf ,

where Vl = {1, . . . , nl} and Vf = {nl + 1, . . . , n} represent

the sets of leaders and followers, respectively. Nodes in set

Vl are viewed as roots and there is no edge between any two

roots. Therefore, G is an nl-rooted undirected graph. The edges

between sets Vl and Vf are unidirectional, i.e., Vl → Vf while

the edges among set Vf are bidirectional. Denote pl, pf , vl
and vf as the positions and velocities of leaders and followers

respectively. Denote the formation of agents as G(p) where

node i of G is mapped to pi for all i ∈ V and thus undirected

graph G(pf ) ⊂ G(p) is denoted as the formation of followers.

For every edge (i, j) ∈ E , define the edge vector and

bearing vector as eij := pj − pi and gij :=
eij

‖eij‖ respectively,

where ‖ · ‖ denotes the Euclidean norm of a vector or the

spectral norm of a matrix. Define the orthogonal projection

matrix Pgij := Id − gijg
T

ij , where Id ∈ R
d×d is the identity

matrix. For convenience, express the vectors of the nl-rooted

undirected graph in a compact form. Let m be the number of

edges in G. Define the k-th edge in G as ek := eij , gk :=
ek

‖ek‖ , where k ∈ {1, . . . ,m}. Let e = [eT

1, . . . , e
T

m]T and

g = [gT

1, . . . , g
T

m]T. Define H ∈ R
m×n as the incidence matrix

of G as in [6]. By definition, e = (H ⊗ Id)p := H̄p, where ⊗
denotes the Kronecker product. Define the Laplacian matrix of

the undirected graph G(pf ) describing the underlying topology

of followers, as in [18], where all the edges have unit weights.

Lf is positive semi-definite. Let λmin2(Lf ) > 0 be the second

smallest eigenvalue of Lf .

There is a rotation between reference frames Σi and Σl.

Without loss of generality, suppose all frames are three-

dimensional (3D), i.e., d = 3, whereas the 2D case can be

expressed by annihilating one dimensional coordinate in the

3D case. Let SO(3) = {Q ∈ R
3 : QTQ = I3, det(Q) = 1}

be the special orthogonal group. Denote Qi ∈ SO(3) as the

rotation matrix from Σi to Σl. Define the orientation of agent

i as Qi, i.e., the rotation relative to the attitude of leaders.

Let [αi, βi, γi]
T be the ZY X Euler angle of rotation Qi and

θi be the corresponding spatial angle between the attitude of

agent i and that of leaders. The relation between Qi(θi) and

[αi, βi, γi]
T is Qi(θi) = Rz(αi)Ry(βi)Rx(γi), where Rx, Ry

and Rz represent the rotation matrix w.r.t. axes X , Y , and

Z respectively. The relations between the velocities, bearings

in Σl and Σi [6], [17], as well as the relation between the

bearings’ derivatives in Σl and Σi are

vi = Qiv
i
i , gij = Qig

i
ij , ġij = Q̇ig

i
ij +Qiġ

i
ij , (2)

where giij is the bearing measured in Σi.

The notation “∧” used in this paper is the skew-symmetric

operator from a vector in R
3 to the skew-symmetric matrix in

R
3×3, that is,





x1

x2

x3





∧

=





0 −x3 x2

x3 0 −x1

−x2 x1 0



 . (3)

The notation “∨” denotes the inverse operator of “∧”. Then,

the dynamics of Qi is

Q̇i = Qiŵ
i
i , (4)

where wi
i is the angular velocity to be designed in Σi. Define

the energy of rotation φ(Qi) :=
1
2 tr(I3 −Qi) ≥ 0 as in [18],

which represents “how much” Σi has rotated from Σl. Note

that φ(Qi) = 0 if and only if Qi = I3, and the derivative of

φ(Qi) is φ̇(Qi) = (sk(Qi)
∨)Twi

i , with sk(Qi) :=
1
2 (Qi−QT

i)
according to [18].

Moreover, the concept of generalized positive definiteness

[18] is used to describe a property of a real and not necessarily

matrix. For a real matrix A, denote A ≻ 0 if xTAx > 0 for all

nonzero vectors x. Consequently, if A ≻ 0, then the symmetric

matrix A+AT is positive definite.

B. Problem Formulation

The desired target formation of the multi-agent systems is

formally defined as follows.

Definition 1: (Target Formation) Let G(p∗(t)) be a target

formation satisfying the following requirements:

1) Bearing:
p∗

j (t)−p∗

i (t)

‖p∗

j
(t)−p∗

i
(t)‖ = g∗ij , ∀(i, j) ∈ E .

2) Velocity: ṗ∗(t) = v∗ = 1n ⊗ vc, vc ∈ R
d,

where g∗ij is called the bearing constraint.

Note that the autonomous leaders move with constant ve-

locity vc for t ≥ 0. Substituting (1) and (4) to (2) yields the

dynamics of the follower agent i ∈ Vf in Σl:

ṗi = vi, v̇i = Q̇ivi +Qiu
i
i, Q̇i = Qiŵ

i
i. (5)

The bearing-only formation tracking control problem of multi-

agents systems in local reference frames is formulated as

follows.

Problem 1: Consider n agents and an interaction graph

G. Given the constant bearing constraints g∗ij , (i, j) ∈ E , the

leaders moving with a constant velocity vc and the orientation
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Ql(t) ≡ I3, l ∈ Vl, for each follower i ∈ Vf with dynamics

(5) and the initial position pi(t0), velocity vi(t0), orientation

Qi(t0), find a control law in the form of

ui
i = ρ(giij , ġ

i
ij, Q

T

iQj), wi
i = ̺(QT

iQj), j ∈ Ni, (6)

such that p(t) → p∗(t), v(t) → 1n ⊗ vc, g(t) → g∗, and

Qi(t) → I3 as t → ∞, where giij , ġiij and QT

iQj represent

the local bearing, the varying rate of the local bearing and

the relative orientation, respectively, and ρ(·) and ̺(·) are

sufficiently smooth functions to be designed.

The solution is based on the following assumptions.

[A1] G is fixed and connected.

[A2] Qi(t0) ≻ 0, i ∈ Vf .

[A3] [pT(t0), v
T(t0)]

T locates in any a priori given (arbitrar-

ily large) bounded set Ξ0.

[A4] The bearing constraints g∗ij and the leaders with a

constant velocity vc ensure a unique target formation G(p∗(t)).
Remark 2.1: For the rotation matrix Qi, Qi ≻ 0 if and

only if the corresponding spatial angle θi satisfies |θi| < π
2

[18]. Therefore, [A2] holds if the initial spatial rotation angle

satisfies |θi(t0)| < π
2 .

Remark 2.2: Assumptions similar to [A1] and [A2] were

made in [18] to achieve the synchronization of the agents’

orientations. [A3] is used to build the practical semi-global

asymptotic stability. [A4] ensures a unique target formation.

Otherwise, it is not guaranteed to achieve the target forma-

tion by any control approaches. To satisfy [A4], the bearing

constraints and the leaders need to meet the condition in [14,

Theorem 1].

III. MAIN RESULTS

In this section, a bearing-only control law is proposed to

solve the formation tracking control problem, i.e., Problem

1. A technical lemma in the Appendix, is developed as

a corollary of [19, Lemma 2.1] to prove the semi-global

asymptotic stability of the formation. Before this, the proof of

locally exponential convergence of orientation synchronization

is provided to ensure the condition in this lemma.

A. A Bearing-Only Control Law

The proposed acceleration and orientation control laws are

ui
i = kp

∑

j∈Ni

(giij −
1

2
(I3 +QT

iQj)g
∗
ij) + kv

∑

j∈Ni

ġiij , (7)

wi
i = kw

∑

j∈Ni

sk(QT

iQj)
∨, i ∈ Vf , (8)

where kp, kv and kw are any positive constant control gains.

The acceleration controller (7) is motivated by that in [16,

Section IV]. The followers are supposed to be equipped with

an optical pin-hole modeled camera. The varying rate of

bearing ġiij in (7) can be obtained based on the pin-hole

camera model, as the bearing giij is measured. Besides, the

relative orientation QT

iQj can be obtained, for example, by

a Kalman filtering estimator using line-of-sight measurement

from an onboard optical sensor [20]. As the proposed dynamic

control law relies merely on the local measurements and does

not require any communications between agents, it can be

implemented in a decentralized manner.

B. Stability Analysis of Formation

By substituting the control laws (7) and (8) into (5) and (2),

the closed-loop system expressed in Σl is

ṗi = vi,

v̇i = kp
∑

j∈Ni

(gij − g∗ij) + kv
∑

j∈Ni

ġij + hi(vi, gij , Ẽ)j∈Ni
,

Q̇i =
kw
2

∑

j∈Ni

Qi(Q
T

iQj −QT

jQi), (9)

where Ẽ = [ET

1, . . . , E
T

nf
]T ∈ R

3nf×3, Ei = Qi − I3 and

hi(vi, gij , Ẽ)j∈Ni
=

kp
2

∑

j∈Ni

(Ei + Ej)g
∗
ij

+
kw
2

∑

j∈Ni

(EjE
T

i − EiE
T

j + ET

i − Ei + Ej − ET

j)vi−
kvkw
2

×
∑

j∈Ni





∑

j∈Ni

(EjE
T

i − EiE
T

j + ET

i − Ei + Ej − ET

j)



 gij .

Denote h(v, g, Ẽ) = [0nl
, hT

1, . . . , h
T

nf
]T ∈ R

3n. Rewrite the

closed-loop system in a compact form as

ṗ = v,

v̇ = M (kp(g − g∗) + kv ġ) + h, M = −
[

0 0
0 I3nf

]

H̄T,

where g∗ = [g∗1
T, . . . , g∗m

T]T and ġ = [ġT

1, . . . , ġ
T

m]T.

Define the error state as χ := [δT

p, δ
T

v, δ
T

g]
T, where δp :=

p− p∗, δv := v− 1n ⊗ vc and δg := g− g∗. The error system

is expressed as a nominal system χ̇ = F (χ, δ̇g(t)) with a

perturbation G(χ, Ẽ), i.e.,

χ̇ = F (χ, δ̇g(t)) +G(χ, Ẽ), (10)

with

F (χ, δ̇g(t)) =





O3n I3n O3n×3m

O3n O3n kpM
O3n O3n O3n×3m



χ+





03n

kvMδ̇g(t)

δ̇g(t)



 ,

G(χ, Ẽ) = [0T

3n, h
T,0T

3m]T ∈ R
6n+3m,

where O and 0 are both all-zero matrix and vector of suitable

dimension.

In view of that the convergence of Ẽ depends on that of

Qi, i ∈ Vf , the result on the convergence rate of the proposed

orientation synchronization is stated as follows.

Theorem 1: If [A1]–[A2] are satisfied, the orientation

control law (8) guarantees that the orientation errors Qi −
I3, i ∈ Vf , asymptotically converge to a compact set con-

taining the origin in which the relative orientations satisfy

QT

iQj ≻ 0, (i, j) ∈ E , and then locally exponentially converge

to the null matrix O.

To prove Theorem 1, we need the following two lemmas.

Lemma 1 (Lemma 2 in [18]): The orientation matrices of

followers satisfy Qi ≻ 0, i ∈ Vf if [A1]–[A2] are satisfied.
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Lemma 2: If [A1]–[A2] are satisfied, the orientation control

law (8) guarantees that the errors Qi− I3, i ∈ Vf , asymptoti-

cally converge to a compact set containing the origin in which

the relative orientations satisfy QT

iQj ≻ 0, (i, j) ∈ E .

Proof. Assumptions [A1]–[A2] are sufficient to guarantee

the asymptotic stability [18, Corollary 2], i.e., Qi converges

to I3. Consequently, the corresponding spatial angles of the

relative orientations QT

iQj converge to 0. Therefore, there

exists a compact set of Qi − I3 in which the spatial angles

of QT

iQj are less than π/2. The orientation errors Qi − I3
converge to this compact set where QT

iQj ≻ 0 holds.

Now the proof of Theorem 1 is stated as follows.

Proof of Theorem 1. Rewrite the control law (8) as

wi
i = kw

∑

j∈Vf∩Ni

sk(QT

iQj)
∨ + kwcisk(Q

T

i)
∨, (11)

where ci ∈ N represents the numbers of leaders in set Ni.

Choose a potential function U = U1 +U2 as the Lyapunov

function candidate, where

U1 =
1

kw

nf
∑

i=1

nf
∑

l=1

φ(QT

iQl), U2 =
1

kw

nf
∑

i=1

ciφ(Q
2
i ). (12)

Since Qi ∈ SO(3), we have U = 0 ⇔ Qi = Ql = I3.

The time derivative of U1 along the trajectory of system (9)

yields

U̇1 =
1

kw

nf
∑

i=1

nf
∑

l=1

[sk(QT

iQl)
∨]T(−wi

i + wl
l)

= PA1 + PB1, (13)

where

PA1 = −2

nf
∑

i=1

nf
∑

l=1

∑

j∈Vf∩Ni

[sk(QT

iQl)
∨]Tsk(QT

iQj)
∨, (14)

PB1 = −2

nf
∑

i=1

ci

nf
∑

l=1

[sk(QT

iQl)
∨]Tsk(QT

i)
∨. (15)

As (13) shows, U̇1 is divided into two parts, PA1 and PB1.

Similarly, the time derivative of U2 along the trajectory of

system (9) leads to U̇2 = PA2 + PB2, where

PA2 = 2

nf
∑

i=1

∑

j∈Vf∩Ni

ci[sk(Q
2
i )

∨]Tsk(QT

iQj)
∨, (16)

PB2 = 2

nf
∑

i=1

c2i [sk(Q
2
i )

∨]Tsk(QT

i)
∨. (17)

It follows from [18, Theorem 2] that the following inequal-

ity holds,

PA1 ≤ −kwǫ1λmin2(Lf )U1, (18)

where ǫ1 = mint,i,l λmin(
QT

iQl+QT
lQi

2 ) > 0 by Lemma 2.

In light of the properties of trace xTy = − 1
2 tr(x̂ŷ),

tr(AT) = tr(A), tr(A+ B) = tr(A) + tr(B) and tr(AB) =
tr(BA), PB1 satisfies

PB1 =

nf
∑

i=1

ci

nf
∑

l=1

tr[sk(QT

iQl)sk(Q
T

i)]

=
1

4

nf
∑

i=1

ci

nf
∑

l=1

tr[(QT

iQl −QT

lQi)(Q
T

i −Qi)]

= −1

2

nf
∑

i=1

ci

nf
∑

l=1

tr[QT

l(I3 −Q2
i )]

≤ −1

2

nf
∑

i=1

ci

nf
∑

l=1

λmin(
Ql +QT

l

2
)tr[I3 −Q2

i ], (19)

where the last inequality follows from [21, Theorem 1]. Then,

it holds that

PB1 ≤ − ǫ2
2

nf
∑

i=1

ci

nf
∑

l=1

tr[I3 −Q2
i ] ≤ 0, (20)

where ǫ2 = mint,l λmin(
Ql+QT

l

2 ) = mint,i λmin(
Qi+QT

i

2 ) =

mint,j λmin(
Qj+QT

j

2 ) > 0 by Lemma 1.

Similarly, with c2i ≥ ci, we have the following inequalities,

PA2 ≤ − ǫ22
2

nf
∑

i=1

ci
∑

j∈Vf∩Ni

tr[I3 −Q2
i ] ≤ 0, (21)

PB2 ≤ −ǫ2

nf
∑

i=1

ciφ(Q
2
i ) = −kwǫ2U2. (22)

It follows from (18), (20), (21), and (22) that

U̇ = U̇1 + U̇2 ≤ −kwǫ1λmin2(Lf )U1 − kwǫ2U2

≤ −ǫ(U1 + U2) = −ǫU, (23)

where ǫ = min(kwǫ1λmin2(Lf ), kwǫ2) > 0. By the compari-

son principle [22, Lemma 3.4], we have

U ≤ U(t0)e
−ǫ(t−t0). (24)

As a result, {Qi = I3}, i ∈ Vf is the locally exponentially

stable equilibrium point set, that is, Qi → I3 exponentially

as t → ∞. A similar proof of local orientations’ exponential

convergence was made in [18]. The proof is completed.

Now, we present the main result as follows.

Theorem 2: (Semi-Globally Asymptotic Stability) Under the

control laws (7) and (8), the error state χ of system (10)

converges to 0 if [A1]–[A4] are satisfied.

Proof of Theorem 2. A technical lemma is given in the Ap-

pendix to prove the semi-global stability. Firstly, consider the

nominal system χ̇ = F (χ, δ̇g(t)) with χ(t0) ∈ X , where the

domain X is defined as X := {χ : ‖δp‖ ≤ Bp, ‖δv‖ ≤ Bv}
since [pT(t0), v

T(t0)]
T ∈ Ξ0 by [A3].

Consider a Lyapunov function candidate V : R≥0 × X →
R≥0 as V (t, χ) = kpe

T(g − g∗) + 1
2δ

T

vδv = kpδ
T

pH̄
Tδg +

kpe
∗Tδg + 1

2δ
T

vδv, where e∗ = H̄p∗(t) is time-invariant in

Definition 1. By [16, Lemma 2], V (t, χ) is positive definite,

and by [22, Lemma 4.3], subcondition (i) of [C1] in Lemma

3 is satisfied.

Taking the time derivative of V (t, χ) along the tra-

jectory of system χ̇ = F (χ, δ̇g(t)) yields V̇ (t, χ) =

−kv
∑m

k=1 ė
T

k

Pgk

‖ek‖ ėk, which is negative semi-definite by [16,

Theorem 3]. Thus, the nominal system χ̇ = F (χ, δ̇g(t))
is uniformly asymptotically stable in the domain X , and

subcondition (ii) of [C1] in Lemma 3 is satisfied.
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Next, for all χ ∈ X , we have

‖χ‖ =
√

‖δp‖+ ‖δv‖+ ‖δg‖ ≤
√

B2
p +B2

v + 4m := ι1,

since ‖δg‖ ≤ ‖g‖ + ‖g∗‖ =
√

‖g1‖2 + . . .+ ‖gm‖2 +
√

‖g∗1‖2 + . . .+ ‖g∗m‖2 = 2
√
m. Obviously, there exists a

positive constant σ such that

max(
√

B2
p + 4m+ σ,

√

B2
v + 4m+ σ) < ι1.

Choose a positive constant ζ such that

max(
√

B2
p + 4m+ σ,

√

B2
v + 4m+ σ) < ζ < ι1.

Without loss of generality, suppose Bp > Bv . It follows that

max(
√

B2
p + 4m+ σ,

√

B2
v + 4m+ σ) =

√

B2
p + 4m+ σ.

For any χ ∈ X such that 0 <
√

B2
p + 4m+ σ < ζ ≤ ‖χ‖ ≤

ι1, we have ‖δp‖2 + ‖δv‖2 + ‖δg‖2 = ‖χ‖2 > B2
p + 4 + σ,

i.e., ‖δv‖2 > (B2
p − ‖δp‖2) + (4m− ‖δg‖2) + σ ≥ σ > 0. As

a result, V (t, χ) satisfies V (t, χ) ≥ 1
2‖δv‖2 > 1

2σ. Compute

the norm of ∂V
∂χ

= [kpδ
T

gH̄, δT

v, kp(δ
T

pH̄
T + e∗T)] as

∥

∥

∥

∥

∂V

∂χ

∥

∥

∥

∥

=
√

k2p‖H̄Tδg‖2 + ‖δv‖2 + k2p‖H̄δp + e∗‖2

≤
√

4mk2p‖H̄‖2 +B2
v + k2p(Bp‖H̄‖+ ‖e∗‖)2 := ι2, (25)

and it follows that

∥

∥

∥

∂V
∂χ

∥

∥

∥
‖χ‖ ≤ ι1ι2. Choose b1 ≥ 2ι1ι2

σ
, then

subcondition (iii) of [C1] in Lemma 3 is satisfied.

From (25), choose b2 ≥ ι2 > 0, then subcondition (iv) of

[C1] in Lemma 3 holds. Thus, [C1] in Lemma 3 is satisfied.

Secondly, define Y = {Ẽ = [QT

1 − I3, . . . , Q
T

nf
− I3]

T},

where Qi ≻ 0 for all i ∈ Vf . By Theorem 1, Ẽ = O is

asymptotically stable in Y . Moreover, for any Ẽ ∈ Y , there

exists a compact set Ȳ ⊂ Y with an instant t1 > 0 such that

Ẽ → 0 exponentially in Ȳ after the instant t1. Thus [C2] in

Lemma 3 is satisfied.

Thirdly, since ‖Ei‖ ≤ ‖Ẽ‖, ‖Ej‖ ≤ ‖Ẽ‖, ‖vi‖ ≤ ‖δvi‖ +
vc, ‖gij‖ = 1, ‖δvi‖ ≤ ‖δv‖ ≤ ‖χ‖ and |Ni| ≤ n, we have

‖G(χ, Ẽ)‖ = ‖h(v, g, Ẽ)‖ ≤
nf
∑

i=1

‖hi(vi, gij , Ẽ)j∈Ni
‖

≤
nf
∑

i=1

[kp|Ni|‖Ẽ‖+ kw|Ni|‖Ẽ‖(‖Ẽ‖+ 2)(‖δvi‖+ ‖vc‖)

+ kvkw|Ni|2‖Ẽ‖(‖Ẽ‖+ 2)]

≤ ‖Ẽ‖[Θ1(‖Ẽ‖) + ‖χ‖Θ2(‖Ẽ‖)],

with Θ1(‖Ẽ‖) = n2
(

kp + kw(‖Ẽ‖+ 2)(‖vc‖+ nkv)
)

and

Θ2(‖Ẽ‖) = (n2kw(‖Ẽ‖+2)). Then [C3] in Lemma 3 holds.

By Lemma 3, system (10) is uniformly asymptotically stable

for χ ∈ X . The proof is completed.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, an example is given to illustrate control laws

(7) and (8) designed for double-integrator followers. The target

formation is a cube, consisting of two leaders, Vl = {1, 2}

Fig. 1. The trajectories of leaders and followers.

TABLE I
INITIAL POSITIONS, VELOCITIES AND ROTATION ANGLES

i pi(0)(m) vi(0)(m · s-1) αi(0) βi(0) γi(0)
1 [0, 3, 3]T [0.30, 0.30, 0.30]T 0 0 0
2 [3, 3, 3]T [0.30, 0.30, 0.30]T 0 0 0
3 [4, 0, 4]T [-0.22, 0.47, -0.02]T -π/2.5 π/6 π/10
4 [0, 0, 5]T [-0.24, 0.02, 0.46]T π/4 -π/3 -π/2.8
5 [1, 3, -1]T [0.32, 0.29, -0.29]T -π/6 π/2.5 π/4
6 [2, 1, -1]T [-0.17, -0.14, 0.47]T π/3 -π/3 -π/4.5
7 [4,−2, 3]T [0.11, 0.50, 0.05]T -π/4.5 -π/6 π/3
8 [2, 2, 3]T [0, -0.11, 0.51]T π/2.5 -π/4.5 -π/6

and six followers Vf = {3, . . . , 8}. The cube is defined by the

bearing constraints g∗4,1 = g∗3,2 = −g∗5,6 = g∗7,8 = [0, 1, 0]T,
g∗4,3 = −g∗2,1 = g∗5,8 = g∗6,7 = [1, 0, 0]T, g∗4,6 = g∗3,7 =
g∗2,8 = −g∗5,1 = [0, 0,−1]T and g∗4,8 = 1√

3
[1, 1,−1]T in the

leaders’ reference frame Σl. The initial positions, velocities

and orientations’ rotation angles are listed in Table I. Set the

control gains kp = 0.5, kv = 4.6 and kw = 0.5. As is shown

in Fig. 1, the formation converges to the desired cube. Fig. 2

shows that the velocities of followers converge to those of the

leaders. Figs. 3 and 4 illustrate that the orientation errors and

bearing error converge to zero.

V. CONCLUSIONS

In this paper, a dynamic bearing-only control law has been

proposed to solve the leader-following formation tracking

problem of double-integrators in local reference frames. The

underlying topology among agents is described by a multiply

rooted undirected graph. Only relative bearings and relative

orientations measured in each agent’s body-fixed local ref-

erence frame are utilized to design the control law. In the

future, the translational, scaling and affine formation maneuver

problems where the leaders’ velocities are time-varying will

be studied, and the condition for collision avoidance will also

be investigated.
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Fig. 2. The velocity errors ‖vi − vc‖ (i ∈ V)
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APPENDIX

The following lemma on the perturbed nonlinear system

directly follows from [19, Lemma 2.1].

Lemma 3: Consider the following system:

χ̇ = F (χ, η(t)) +G(χ, Ẽ), (26)

where χ ∈ R
ns is the state, Ẽ ∈ R

ne1×ne2 is an exogenous

signal, η(t) is a time-varying function in a compact set.

F (χ, η(t)) and G(χ, Ẽ) are continuous in their arguments.

F (χ, η(t)) is locally Lipschitz on χ uniformly on η. G(χ, Ẽ)
is locally Lipschitz on (χ, Ẽ). System (26) can be considered

as a perturbation of the nominal system χ̇ = F (χ, η(t)).
Let χ = 0 be an equilibrium point for system (26) and

X ⊂ R
ns be a domain containing χ = 0. System (26) is

uniformly asymptotically stable for χ ∈ X if the following

conditions [C1]–[C3] are satisfied.

[C1] The nominal system χ̇ = F (χ, η(t)) is uniformly

asymptotically stable for χ ∈ X with a Lyapunov func-

tion V : R≥0 × X 7→ R≥0, such that the following

subconditions holds: (i) W (χ) ≤ V (t, χ) ≤ W (χ); (ii)
∂V (t,χ)

∂t
+ ∂V (t,χ)

∂χ
F (χ, η(t)) ≤ −W (χ); (iii)

∥

∥

∥

∂V (t,χ)
∂χ

∥

∥

∥
‖χ‖ ≤

b1V (t, χ), ∀‖χ‖ ≥ ζ; (iv)

∥

∥

∥

∂V (t,χ)
∂χ

∥

∥

∥
≤ b2, ∀‖χ‖ ≤ ζ, where

W (χ) and W (χ) are two class K functions, W (χ) is a positive

semi-definite function, and b1 > 0, ζ > 0 and b2 > 0 are some

constants.

[C2] There exists a class KL function ϕ(·) such that

for all t ≥ t0 ≥ 0 and Ẽ(t0) ∈ Y ⊂ R
ne1×ne2 ,

‖Ẽ(t)‖ ≤ ϕ(‖Ẽ(t0)‖, t − t0), and a compact set Ȳ ⊂ Y

with time t1 > t0 ≥ 0 and two positive constants k and

ς , such that for all t ≥ t1 > t0 ≥ 0 and Ẽ(t1) ∈ Ȳ ,

‖Ẽ(t)‖ ≤ k‖Ẽ(t1)‖e-ς(t−t1).

[C3] The function G(χ, Ẽ) satisfies that for χ ∈ X and

Ẽ ∈ Y , ‖G(χ, Ẽ)‖ ≤ ‖Ẽ‖
(

Θ1(‖Ẽ‖) + ‖χ‖Θ2(‖Ẽ‖)
)

,

where Θ1 : R≥0 7→ R≥0 and Θ2 : R≥0 7→ R≥0 are continuous

functions.
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