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Abstract

This paper investigates the circular formation control problem of networked dynamic unicycles. Each unicycle uses its local
coordinate frame and the topology of the networked unicycles is modeled by a directed graph containing a spanning tree. A
distributed dynamic control law is proposed for each unicycle based on the measurement via local sensing and the information
of its neighbors via intermittent communication. It is shown that all unicycles can globally converge to the circular motion
around a given center which is only known to one unicycle, and can globally converge to a desired spaced formation along the
circle. Finally, simulation results of an example verify the effectiveness of the proposed control law.
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1 Introduction

Recent decade witnesses the rapid development of
distributed formation control (Oh et al., 2015), and
graph theory has been extensively utilized in design and
analysis (Hendrickx et al., 2007; Anderson et al., 2008).
Significant effort has been devoted to formation control
of multiple single-integrators, see Krick et al. (2009);
Dorfler & Francis (2010); Oh & Ahn (2013); Lee & Ahn
(2016) and references therein. However, these results
cannot be applied to multiple unicycles due to the non-
holonomic constraint. As the unicycle model can be used
to describe the simplified model of a mobile wheeled
robot (MWR) and an unmanned aerial vehicle (UAV)
(Qu, 2009), interest in formation control of unicycles has
been growing, and many works focus on circular forma-
tion control of multiple kinematic or dynamic unicycles.
For networked unicycles with all-to-all communica-

tion, Sepulchre et al. (2007) presented a comprehensive
investigation on the circular formation of unicycles with
unit linear velocity. Seyboth et al. (2014) studied the
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case where unicycles maintain nonidentical constant lin-
ear velocities. For the cyclic pursuit problem of multiple
unicycles, it was shown in Marshall et al. (2004, 2006)
that local stability of the closed-loop system can be
established and the equilibrium corresponds to general-
ized regular polygons formation. Sinha & Ghose (2007)
considered the case where unicycles are moving with
different linear velocities. Zheng et al. (2009) proposed
a projection-based control law and ensured that the tra-
jectories of unicycles will not diverge. For unicycles in
the cyclic pursuit manner, many works focused on the
case where the center of the common circle is given and
known to all unicycles. Ceccarelli et al. (2008) took into
account the limited visibility region of onboard sensors,
and Summers et al. (2009) addressed the spaced for-
mation along the circle based on the rigidity of graphs.
Lan et al. (2010) developed a hybrid control law for
a target-enclosing task. Zheng et al. (2015) proposed
controllers based on bearing-only measurement. For
the case where the center is only known to one unicy-
cle, Yu & Liu (2016a) proposed a distributed dynamic
control law for ring-networked unicycles. Several works
investigated the circular formation of unicycles under
a network of more general topology. Sepulchre et al.
(2008) proposed a dynamic control law based on a
balanced graph condition. Chen & Zhang (2011, 2013)
developed a controller based on a jointly connected
condition for unicycles under a proximity graph. Note
that all aforementioned approaches were developed
for kinematic unicycles. While for dynamic unicycles,
El-Hawwary & Maggiore (2013) proposed a hierarchical
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controller design strategy, such that unicycles achieve a
circular formation with a desired spacing.
In this paper, we consider a formation control problem

of networked dynamic unicycles with respect to a given
center only known to one unicycle. The major challenge
is to develop a distributed control law for unicycles of
which the network topology is a directed graph, such
that the global asymptotic stability of the closed-loop
system corresponding to a circular formation with any
desired spacing can be established. To overcome it, a
dynamic control law with a feasible estimate of the cen-
ter is proposed, and it requires each unicycle to use both
sensing and communication, as in Oh & Ahn (2013).
The contribution of this paper mainly lies in the

following four aspects. First, the aforementioned re-
sults on circular formation of kinematic unicycles
cannot be directly extended to dynamic unicycles.
In fact, our proposed control law makes dynamic
unicycles reduced to kinematic unicycles, which im-
plies that the control law design can be applied to
kinematic unicycles. Second, a directed graph with
a spanning tree is a more general assumption than
most existing works, for example, a complete graph
(Sepulchre et al., 2007; Seyboth et al., 2014), a balanced
graph (Sepulchre et al., 2008), a cycle (Marshall et al.,
2004, 2006; Zheng et al., 2009; Summers et al., 2009;
Yu & Liu, 2016a), and a connected undirected graph
(El-Hawwary & Maggiore, 2013). Third, the assump-
tion that only one unicycle knows the center is obviously
less restrictive than the one that all unicycles know the
center (Sepulchre et al., 2007; Ceccarelli et al., 2008;
Summers et al., 2009; Lan et al., 2010; Zheng et al.,
2015). Some works considered an unspecified center
(Marshall et al., 2004, 2006; Sepulchre et al., 2007,
2008; Zheng et al., 2009; Chen & Zhang, 2011, 2013;
Seyboth et al., 2014; El-Hawwary & Maggiore, 2013),
and those results can be extended to the case where only
one unicycle knows a given center, by letting a unicycle
orbit around the center as the so-called “stubborn” one
in Chen & Zhang (2011). However, the stability of the
closed-loop system was established on a linearized sys-
tem (Marshall et al., 2004, 2006; Zheng et al., 2009) or
an approximated system (Chen & Zhang, 2011, 2013).
While our proposed control law guarantees the global
asymptotic stability of the original closed-loop system.
Finally, noting that in the aforementioned works, only
El-Hawwary & Maggiore (2013) considered the circular
formation with any desired spacing, and made unicycles
locally converge to a desired spaced formation when
the sensor graph is directed. While with our proposed
control law, unicycles can achieve global convergence to
any desired spaced formation along the circle.
The rest of this paper is organized as follows. In Sec-

tion 2, the problem formulation and three technical lem-
mas are given. Section 3 presents the main results and
Section 4 shows the simulation results of an illustrative
example. Finally, the conclusion is drawn in Section 5.
Notations: Throughout the paper, ‖x‖ denotes the

2–norm of a vector x ∈ R
n.

2 Preliminaries

2.1 Problem Formulation

Consider N dynamic unicycles in the form of:

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi,

v̇i = Fi/I, ω̇i = Ti/J, i = 1, ..., N, (1)

where pi := [xi yi]
T ∈ R

2 is the coordinate of the po-
sition and θi ∈ R is the heading angle of unicycle i in
the inertial frame, vi ∈ R and ωi ∈ R are the linear ve-
locity and the angular velocity respectively. The control
inputs are the torques Fi and Ti, and I and J are con-
stants associated with the moments of inertia.
All unicycles are anonymous and each one only has

access to the information of its neighbors in a network.
The network topology is described by a directed graph
G = {O, E} as follows. Digraph G consists of a finite set
of nodes O = {1, ..., N} representing N unicycles, and a
set of edges E ⊆ {(j, i) : j 6= i, i, j ∈ O} containing di-
rected edges from node j to node i. A directed edge (j, i)
means that the information of unicycle j is available to
unicycle i. Denote the Laplacian matrix of G by matrix
L. The following assumption is made on G:

Assumption 1 Digraph G contains a directed spanning
tree with one node, namely node l, being the root.

The network is physically set up by the sensors and
communication devices of each unicycle. The network
topology at an instant t can be further described by
a sensor graph Gs(t) = {O, Es(t)} and a communica-
tion graph Gc(t) = {O, Ec(t)}. Define the sets N i

c (t) and
N i

s(t) as N i
c (t) = {j ∈ O|(j, i) ∈ Ec(t)} and N i

s(t) =
{j ∈ O|(j, i) ∈ Es(t)} respectively. Finally, denote the
Laplacian matrices of Gs(t) and Gc(t) by Ls(t) and Lc(t)
respectively. Assume that Gs(t) is time-invariant as in
El-Hawwary & Maggiore (2013) and Gc is allowed to be
time-varying. Then, the following assumption is made.

Assumption 2 There exists an infinite sequence of
nonempty, continuous, uniformly bounded and non-
overlapping time intervals [tn, tn+1), n = 0, 1, ..., with
tn+1 − tn ≤ T̄ for some T̄ > 0. In each [tn, tn+1), there
exists a finite sequence of nonempty and continuous
time subintervals [tkn, t

k+1
n ), k = 0, 1, ..., kn − 1, with

t0n = tn, t
kn
n = tn+1 and tk+1

n − tkn ≥ τ̄ for τ̄ > 0 and an
integer kn. Gc(t) does not change during each [tkn, t

k+1
n ),

and the union graph of Gc(t) during each [tn, tn+1) is G,

i.e.,
⋃j=kn−1

j=0 Gc(t
j
n) = G, n = 0, 1, .... While the sensor

graph Gs(t) satisfies Gs(t) = G for all t ≥ t0.

For the local sensing, when the inertial frame or a com-
mon reference direction (Lin et al., 2004) is unavailable,
the sensors cannot obtain pi, pj, or pi − pj , j ∈ Ni.
In this case, each unicycle can establish its local coor-
dinate frame as in El-Hawwary & Maggiore (2013), i.e.,
the Frenet-Serret frame. Then, pj , q0, and θj , j ∈ Ni,
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measured by unicycle i can be expressed as

pi
j = R(θi)(pj − pi), q

i
0 = R(θi)(q0 − pi), θ

i
j = θj − θi,

respectively, where R(·) =

[

cos(·) sin(·)

− sin(·) cos(·)

]

.

Circular formation control aims at making all unicy-
cles achieve the following objectives: (i) orbiting along
a common circle with the center q0 := [x0 y0]

T and ra-
dius r; (ii) maintaining a desired spaced formation de-
scribed by a vector α ∈ R

N along the common circle;
(iii) moving with a constant angular velocity̟. The vec-
tor α = [α1, ..., αN ]T is used to describe the desired sep-
aration angle of two unicycles with respect to the cen-
ter. α can be set as α1 = 0, αN ≤ 2π, and αi ≤ αi+1,
i = 1, ..., N − 1. Then, αji := αj − αi can be viewed as
the desired separation angle between unicycles i and j
with respect to the center. The circular formation con-
trol problem in this paper is formally defined as follows.

Problem 1 Consider N networked dynamic unicycles
(1). Given a digraph G, a circular formation center q0 ∈
R

2, a radius r, and a constant vector α ∈ R
N describing

the desired spacing, for unicycle i, i = 1, ..., N , with any
initial states [pT

i (t0) θi(t0) vi(t0) ωi(t0)]
T ∈ R

5, ∀t0 ≥ 0,
find a distributed dynamic control law in the form of

[Fi Ti]
T
= σ(ρi

i,p
i
j , θ

i
j , ωji, r, αji), (2)

ρ̇i
i = κ(ρi

i,ρ
j
j,p

i
j , θ

i
j , r, αji), j ∈ Ni, (3)

such that

lim
t→∞

(pi(t)− q0) = r[sin θi(t) − cos θi(t)]
T, (4)

lim
t→∞

(Ls(t)(θ(t) −α)) ∈ S, θ = [θ1, ..., θN ]T, (5)

lim
t→∞

ωi(t) = ̟, lim
t→∞

vi(t) = ̟r, (6)

where r and ̟ are given positive constants, ρi
i, to be

designed later, is an internal state measured in the local
coordinate frame, ωji := ωj − ωi is the relative angular
velocity of the neighbors, αji denotes the desired relative
spacing to the neighbors and is defined as αji := αj −αi

with αi being the ith entry of α, set S is defined as
S = {θ ∈ R

N : Ls(θ − α) = 0mod 2π}. Moreover,
functions σ(·) and κ(·) are both sufficiently smooth.

In Problem 1, (4), (5), and (6) describes the aforemen-
tioned objectives (i), (ii), and (iii) respectively. Note that
the separation angle for each pair of unicycles equals the
relative heading angle (modulo 2π) when the pair of uni-
cycles moves along a common circle. Besides, Problem 1
is investigated under the following assumptions.

Assumption 3 Only one unicycle l knows the center in
its local coordinate frame at the initial time t0, i.e., only
ql
0(t0) is known to unicycle l. In digraph G, node l has

zero in-degree.

Assumption 4 Each unicycle knows its own initial ve-
locities, i.e., vi(t0) and ωi(t0).

Remark 1 Assumption 1 and Gs(t) = G, ∀t ≥ t0, in
Assumption 2 are also used in El-Hawwary & Maggiore
(2013). Assumption 2 implies that the communication
among unicycles are allowed to be intermittent. Under
Assumption 3, the center of the circle q0 can be pre-
specified and is only known to one unicycle. While in
El-Hawwary & Maggiore (2013), q0 is not prespecified
and is dependent on the initial positions of unicycles.

Remark 2 The required measurements in this pa-
per are more restrictive than that in some existing
results on circular formation of kinematic unicycles.
For example, Marshall et al. (2004, 2006); Zheng et al.
(2009); Lan et al. (2010); Zheng et al. (2015) did not
need relative heading angle measurements. However,
these results cannot be directly extended to dynamic
unicycles. For circular formation of dynamic unicycles,
El-Hawwary & Maggiore (2013) also used relative head-
ing angle and relative angular velocity measurements,
i.e., θij andωji. Comparedwith El-Hawwary & Maggiore
(2013), our proposed control law only requires each uni-
cycle to measure its velocities at initial time instead of
for all time, which further reduces the requirement on
measurements. The relative heading angle and relative
angular velocity measurements can be obtained by using
an Attitude and Heading Reference System (AHRS), for
example, the one implemented in Wang et al. (2014).

2.2 Technical Lemmas

We now introduce three technical lemmas which are
used in the next section.
The first lemma is on the stability of continuous-time

adaptive systems Narendra & Annaswamy (1987).

Lemma 1 A system ẋ =

[

A −buT(t)

u(t)bT 0

]

, where

x = [xT
1 xT

2 ]
T, x1 ∈ R

m, x2 ∈ R
n, A ∈ R

m×m is an sta-
ble matrix with A+AT being negative definite, (A, b) is
controllable, and u : R≥0 → R

n is piecewise-continuous
and bounded. The equilibrium of this system is globally
exponentially stable if and only if u(t) is persistently ex-
citing, i.e., there exist positive constants t0, T0, and α

such that
∫ t+T0

t
u(τ)uT(τ)dτ ≥ αI, ∀t ≥ t0.

The second lemma can be obtained by Theorem 1 in
Zhang et al. (2015).

Lemma 2 Suppose that Assumption 1 holds and let
node 1 denote the root in digraph G. Assume that node
1 has no incoming edges from other nodes. Define A =
diag(a21, ..., aN1), where ai1 = 1, i ≥ 2, if there is an
edge (1, i); ai1 = 0, otherwise. DenoteL as the Laplacian
matrix of digraph G = (O\{1}, E\{(1, j)|j ∈ O, j 6= 1}).
Let η = [η2, ..., ηN ]T = (L +A)−11, ζ = [ζ2, ..., ζN ]T =
(L + A)−T1, P = diag(p2, ..., pN) with pi = ζi/ηi, and
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Q = P (L +A) + (L +A)TP . Then, P and Q are both
positive definite.

The third lemma can be referred to as a comparison
principle for vectorial differential equations. Say that
x ≤ y for x, y ∈ R

n if the entries of x and y satisfy
xi ≤ yi, i = 1, ..., n.

Lemma 3 Consider the vectorial differential equation
ẏ = f(t,y) with y = [y1, ..., yn]

T ∈ R
n and f(t,y) =

[f1(t,y), ..., fn(t,y)]
T, where fi(t,y) is differentiable in

t and locally Lipschitz in y, for all t ≥ t0 and all y ∈
Ψ with Ψ being any subset of Rn. Let [t0, T ) (T could
be infinity) be the maximal interval of existence of the
solution y(t) and suppose y(t) ∈ Ψ for all t ∈ [t0, T ). Let
x(t) ∈ R

n be a continuous function of which the upper
right-hand derivative D+x(t) satisfies

D+x(t) ≤ f(t,x(t)), x(t0) ≤ y(t0), (7)

with x(t) ∈ Ψ for all t ∈ [t0, T ). Then, x(t) ≤ y(t) for

all t ∈ [t0, T ) if for any i 6= j, ∂fi(t,x)
∂xj

≥ 0.

The proof is given in Appendix.

3 Main Results

In this section, the solution to the circular formation
control problem is given.
Define the tracking error pei := [xei yei]

T as pei =
R(θi)(q0 − pi + r[sin θi − cos θi]

T), i.e.,

pei = qi
0 + rP, (8)

where P is a constant vector as P = [0 − 1]T.

Thus, to solve Problem 1, it suffices to design [Fi Ti]
T

such that (i) pe = [pT
e1, ...,p

T
eN ]T converges to zero for

any initial pei(t0) ∈ R
2, i = 1, ..., N ; (ii) θ converges to

set S for any initial θ(t0) ∈ R
N .

However, under Assumption 2, unicycle i, i 6= l, does
not have any knowledge of qi

0 or pei. In this case, an es-
timate of the center in the coordinate frame of unicycle
i is set, and is expressed as q̂i

0 ∈ R
2.

The basic idea of control law design is first to make the
dynamic unicycle (1) purely kinematic with the veloci-
ties being new inputs, then to design the velocities such
that each unicycle can converge to the desired circular
motion around its estimate of the center, and finally to
develop a dynamic update law for the estimate such that
all estimates can converge to the actual values.
Then, a dynamic control law is proposed as follows.

Fi = I ˙̂ωir + Ik1k2bir sech
2(k2bi

∑

j∈N i
s (t)

(θij − αji))
∑

j∈N i
s (t)

ωji,

(9)

Ti =
JFi

Ir
−

Jµiνi
r

QT ˙̂qi
0 sech

2(νiQ
Tq̂i

0), (10)

˙̂qi
0 = k3

∑

j∈N i
c (t)

aij(t)(R(−θij)q̂
j
0 + pi

j − q̂i
0)

+ ω̄iSq̂
i
0 − v̄iQ, i 6= l, (11)

˙̂ql
0 = ω̄lSq̂

l
0 − v̄lQ+ k3(q̂

l
0 − q̆l

0), (12)

˙̆ql
0 = ω̄lSq̆

l
0 − v̄lQ, (13)

˙̂ωi = k4(̟ − ω̂i), (14)

with v̄i and ω̄i being defined as

v̄i = ω̂ir + k1r tanh(k2bi
∑

j∈N i
s(t)

(θij − αji)), (15)

ω̄i = v̄i/r − µi tanh(νiQ
Tq̂i

0)/r, (16)

where ω̂i ∈ R and q̆l
0 ∈ R

2 are internal states, k1–k4, µi

and νi are positive constants, S =

[

0 1

−1 0

]

, Q =

[

1

0

]

,

bl = 0 and bi = 1 if i 6= l, aij(t) is defined as: aij(t) = 1
if (j, i) ∈ Ec(t); aij(t) = 0, otherwise. Moreover, µi, νi >
0 and the initial states q̂i

0(t0) and ω̂i(t0) are properly
selected such that v̄i(t0) = vi(t0) and ω̄i(t0) = ωi(t0).
That is, µi, νi > 0, q̂i

0(t0) and ω̂i(t0) are chosen as

ω̂i(t0) = vi(t0)/r − k1 tanh(k2bi
∑

j∈N i
s (t0)

(θij(t0)− αji)), (17)

QTq̂i
0(t0) =

arctanh((vi(t0)− ωi(t0)r)/µi)

νi
. (18)

In addition, the initial q̆l
0(t0) is set to q̆l

0(t0) = ql
0(t0)

since ql
0(t0) is known under Assumption 3.

The proposed control law (9)–(14) is in the form of
(2)–(3). Torque Fi in (9) is for achieving the desired
spacing along the common circle, and torque Ti in (10)
is for achieving the convergence to the common circle
with center q0. To implement control law (9)–(14), the
sensors of unicycle i need to measure the relative states
pi
j and θij . The communication device of unicycle i is

used to receive the information q̂
j
0 from its neighbors.

The main theorem of this paper is stated as follows.

Theorem 1 The circular formation control problem,
i.e., Problem 1, can be solved by the dynamic control
law (9)–(14) with (15)–(16) under Assumptions 1–4.

In fact, [Fi Ti]
T in (9)–(10) is designed such that I ˙̄vi =

Fi and J ˙̄ωi = Ti, equivalently, v̇i − ˙̄vi = 0, ω̇i − ˙̄ωi = 0.
Since [v̄i(t0) ω̄i(t0)]

T is set to [vi(t0) ωi(t0)]
T, we have

vi(t) = v̄i(t), ωi(t) = ω̄i(t), ∀t ≥ t0. (19)

Thus, the dynamic unicycle i in the form of (1) is reduced
to a kinematic unicycle in the following form

ẋi = v̄i cos θi, ẏi = v̄i sin θi, θ̇i = ω̄i, (20)
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with v̄i and ω̄i being the control inputs. Using (8) and
(19), the dynamics of the tracking errors pei become

ṗei = ω̄iSpei + (ω̄ir − v̄i)Q. (21)

Moreover, since q̇l
0 = ωlSq

l
0 − vlQ, it follows from (13),

(19), and q̆l
0(t0) = ql

0(t0) that q̆l
0(t) = ql

0(t), ∀t ≥ t0,
which makes ql

0(t) known to unicycle l.
Hence, to prove Theorem 1, it suffices to show that the

kinematic unicycles (20) with controller [v̄i ω̄i]
T in (15)–

(16) can achieve the global convergence to the common
circle and the desired spacing. To this end, Theorem 1
is proved by the following two steps.
Step 1: Show the global convergence to the common

circle. That is, consider the closed-loop system consist-
ing of (11)–(16) and N systems (21), and prove that
xei(t) converges to zero, yei(t) converges to zero if v̄i(t)
does not converge to zero, and ω̄i(t) converges to v̄i(t)/r.
Step 2: Show the global convergence to the desired

spaced formation. That is, consider the closed-loop sys-
tem consisting of (11)–(16) and N systems θ̇i = ω̄i, and
prove that θ converges to set S and v̄i(t) converge to̟r.

Remark 3 If the initial velocitymeasurementswere im-
pacted by noises, (19) would not hold. To avoid this sit-
uation in practice, each unicycle may start with static
state, i.e., vi(t0) = ωi(t0) = 0. Thus, the initial veloci-
ties measurements are not needed any longer. Note that
each unicycle can choose its own initial time. Moreover,
once ω̂i(t0), k1, and µi are determined, vi and ωi are
maintained within known bounds for all time.

3.1 Step 1: Global Convergence to the Common Circle

In this subsection, we show that all kinematic unicy-
cles (20) globally converge to a common circle with cen-
ter q0 and radius r, provided that v̄i(t) does not converge
to zero. To this end, the following proposition is needed.

Proposition 1 Consider N subsystems in the form of
(11)–(13) with the communication graph Gc. Given a
center q0 ∈ R

2 and a radius r, under Assumptions 1–3,
for any initial states q̂i

0(t0) ∈ R
2, ∀t0 ≥ 0, i = 1, ..., N ,

q̂i
0(t) converge to qi

0(t) exponentially as t → ∞.

Proof:Define q̃i = q̂i
0−qi

0. Using (11), (12), (13), (19),
and q̆l

0(t) = ql
0(t), ∀t ≥ t0 yields

˙̃qi = ω̄iSq̃i + k3(−biq̃i +
∑

j∈N i
c (t)

aij(t)(R(θji )q̃j − q̃i)), (22)

where bl = 1, alj(t) = 0 and bi = 0 if i 6= l.
Consider a Lyapunov function candidate Vi(q̃i) =

1
2 q̃

T
i q̃i. Taking its time derivative along the trajectories

of system (22) leads to

V̇i(q̃i) =
1

2
q̃T
i (S + ST)q̃i − k3(biq̃

T
i q̃i +

∑

j∈N i
c (t)

aij(t)q̃
T
i q̃i

−
∑

j∈N i
c (t)

aij(t)
1

2
(q̃T

i R(θji )q̃j + q̃T
j R

T(θji )q̃i))

≤ k3(−bi‖q̃i‖
2 +

∑

j∈N i
c (t)

aij(t)(‖q̃j‖‖q̃i‖ − ‖q̃i‖
2)),

where it is noted that S+ST = 0 and ‖R(θji )q̃j‖ = ‖q̃j‖.
Define q̄i = ‖q̃i‖. Using Vi(q̃i) = 1

2‖q̃i‖
2 = 1

2 q̄
2
i , the

right-hand time derivative of q̄i satisfies

D+q̄i ≤ k3(−biq̄i +
∑

j∈N i
c (t)

aij(t)(q̄j − q̄i)). (23)

Denote q̄ = [q̄1, ..., q̄N ]T, and N inequalities in the form
of (23) are rewritten in the following compact form

D+q̄ ≤ −H(t)q̄, (24)

where H(t) is a block matrix of the Laplacian matrix
L̄c(t) of a digraph Ḡc(t) obtained by firstly remov-
ing all directed edges (j, l), j ∈ N i

c (t), in digraph
Gc(t), and then adding node 0 (denoting q0) and a di-
rected edge (0, l). Thus, L̄c(t) can be partitioned as

L̄c(t) =





0 [0, ..., 0]

−A0(t)1 H(t)



, where A0(t) = diag

(a10(t), ..., aN0(t)). If Gc(t) = G, ∀t ≥ t0, then Ḡ(t) = Ḡ,
where Ḡ is fixed and contains a directed spanning tree
with node 0 being the root by Assumptions 1 and 3.
It follows from Lemma 3 and (24) that

q̄(t) ≤ e−H(t−t′)q̄(t′), ∀t ≥ t′ ≥ t0. (25)

Then, consider an instant tkn > t0, n ≥ 1, and we have

q̄(tkn) ≤ e−H(tk−1
n )(tkn−tk−1

n )q̄(tk−1
n )

= e−H(tk−1
n )(tkn−tk−1

n )−...−H(t00)(t
1
0−t00)q̄(t0)

≤ e−H(tk−1
n )τ̄−...−H(t00)τ̄ q̄(t0)

≤ e−
∑

n

m=0

∑

km

k=0
H(tkm)τ̄

q̄(t0), (26)

since tk+1
n − tkn ≥ τ̄ > 0. Let H(tm) =

∑km

k=0 c
k
mH(tkm).

Under Assumption 2,
⋃j=km−1

j=0 Gc(t
j
m) = G during each

time subinterval [tkm, tk+1
m ), k = 0, 1, ..., km − 1.

Define L̄(tm) as the Laplacian matrix of a graph
Ḡ(tm) which is an edge-weighted graph of Ḡ. Simi-
larly, H(tm) is a block matrix of L̄(tm), i.e, L̄(tm) =




0 [0, ..., 0]

−A0(tm)1 H(tm)



. Using Lemma 1 in Su & Huang
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(2012), all eigenvalues ofH(tm) have positive real parts.
Thus, the minimum real part of these eigenvalues, i.e.,
λ(H(tm)), is positive. By (26), we have ‖q̄(tkn)‖ ≤

‖e−τ̄
∑

n

m=0
H(tkm)

q̄(t0)‖ ≤ e−τ̄
∑

n

m=0
λ(H(tkm))‖q̄(t0)‖.

Since n → ∞ as t → ∞, q̄(t) converges to 0 exponen-
tially as t → ∞. This completes the proof.
Next, the following proposition can be obtained.

Proposition 2 ConsiderN systems (21) with the com-
munication graph Gc, and control law (11)–(16). Under
Assumptions 1–3, for any initial states pei(t0) ∈ R

2,
i = 1, ..., N , ∀t0 ≥ 0, xei(t) converges to zero asymptot-
ically as t → ∞, yei(t) converges to zero if v̄i(t) does not
converge to zero, and ω̄i(t) converges to v̄i(t)/r.

Proof: Define p̂ei := [x̂ei ŷei]
T as p̂ei = q̂i

0 + rP , and
p̃ei := [x̃ei ỹei]

T as p̃ei = p̂ei − pei. By (8), we have

p̃ei = q̂i
0 − qi

0 = q̃i. (27)

Then, the closed-loop system consisting of (21) and
the dynamic control law (11)–(16), can be written as

ṗei = f(pei, ω̄i(t)) + g(pei, p̃ei, ω̄i(t)), (28)

where f(pei, ω̄i(t)) = ω̄iSpei + (ωeir − v̄i)Q, and
g(pei, p̃ei, ω̄i(t)) = (ω̄i − ωei)Q with ωei = v̄i/r −
µi tanh(νiQ

T(qi
i + rP ))/r. Moreover, |ω̄i − ωei| satisfies

|ω̄i − ωei| = µi|(tanh(νi(xei + x̃ei))− tanh(νixei))|/r

≤ µiς |x̃ei|/r, (29)

with some constant ς > 0. System (28) can be consid-
ered as the nominal system ṗei = f(pei, ω̄i(t)) with a
perturbation. By (14), ω̂i(t) converges to ̟ exponen-
tially as t → ∞. By (15) and (16), ω̄i is uniformly
bounded. It follows from Proposition 1, (27) and (29)
that ‖g(pei, p̃ei, ω̄i(t))‖ converges to zero exponentially
as t → ∞. Then, the remaining proof to show that xei(t)
converges to zero asymptotically and yei(t) converges to
zero if v̄i(t) does not converge to zero, can be done by
mimicking the proof of Lemma 3.3 in Yu & Liu (2016a).
As xei(t) converges to zero, ω̄i(t) converges to v̄i(t)/r.

3.2 Step 2: Global Convergence to a Desired Spacing

In this subsection, we show that that all kinematic uni-
cycles (20) achieve the desired spacing along the common
circle, as is summarized in the following proposition.

Proposition 3 Consider the sensor graph Gs under As-
sumptions 1–2, and systems θ̇i = ω̄i, i = 1, ..., N , with
control law (11)–(16). For any initial states θ(t0) ∈ R

N ,
∀t0 ≥ 0, θ(t) converges to set S asymptotically as t →
∞, and meanwhile v̄i(t) converges to ̟r.

Proof: Define φi = k2bi
∑

j∈N i
s(t)

(θij − αji), and it follows

from (15) and (16) that

φ̇i = k2bi
∑

j∈N i
s(t)

(k1(tanh φj − tanhφi) + εj − εi), (30)

where εi = ω̂i − µi tanh(νiQ
Tq̂i

0)/r.
Define γi = tanhφi and γi ∈ (−1 1). With denoting

γ = [γ1, ..., γN ]T and ε = [ε1, ..., εN ]T, the dynamics of
γ can be written in the following compact form

γ̇ = −k1k2W (γ)Lγ − k2W (γ)Lε, (31)

where it is noted that Ls(t) = L by Assumption 2, and
W (γ) = diag(b1(1 − γ2

1), ..., bN (1 − γ2
N )). System (31)

can be viewed as the following nominal system

γ̇ = −k1k2W (γ)Lγ, (32)

with perturbation −k2W (γ)Lε. First, we show that the
nominal system (32) is exponentially stable at γ = 0.
Under Assumption 1, let node 1 denote the root node,

i.e., l = 1. Define γ̃i = γi − γ1, i ≥ 2, and denote γ̃ =
[γ̃2, ..., γ̃N ]T. Since b1 = 0 and bi = 1 if i 6= l, then

φ1 = 0, φ̇1 = 0, γ1 = 0, and γ̇1 = 0. It follows from (32)
that the dynamics of γ̃ can be written as

˙̃γ = −k1k2W (γ̃)(L+A)γ̃, (33)

where W (γ̃) = diag(1 − γ̃2
2 , ..., 1 − γ̃2

N ), L is the Lapla-
cian matrix of a graph G obtained by removing node
1 and edges (1, i), (i, 1), i ≥ 2, from G, and A =
diag(a21, ..., aN1) with ai1 = 1 for (1, i) ∈ E and ai1 = 0
for (1, i) 6∈ E . Since γi ∈ (−1, 1), W (γ̃) is always posi-
tive definite.
Define U = diag(u2, ..., uN) with ui = ζi/ηi, i ≥ 2,

η = [η2, ..., ηN ]T = (L + A)1, ζ = [ζ2, ..., ζN ]T =
(L + A)−T1. By Lemma 2, U is positive definite.
Furthermore, define D(γ) = diag(d2, ..., dN ) with
di = d(γi), i ≥ 2, where d(·) : (−1, 1) → R is defined as
d(x) = 1 if x = 0; d(x) = 1

x2h(x) if x ∈ (−1, 1) \ {0},

with h(·) : (−1, 1) → R satisfying ∂h(x)
∂x

= 2x
1−x2 . By

L’Hospital’s rule, lim
x→0

d(x) = 1 = d(0), and d(x) is a

differentiable function satisfying

d(x)(1 − x2) +
1

2

∂d(x)

∂x
x(1 − x2) = 1. (34)

By (34), it can be verified that d(x) > 0 for x ∈ (−1, 1).
Consider the following Lyapunov function candidate

V (γ̃) = 1
2 γ̃

TUDγ̃. Taking its time derivative along the
trajectories of the nominal system (32) yields

V̇ (γ̃) = −k1k2γ̃
T(UDW (L+A) + (L+A)TWUD)γ̃

+
N
∑

i=2

(uiγ̃
2
i

∂di
∂γ̃i

(1 − γ̃2
i )

∑

j∈Ni

(γ̃j − γ̃i)),

= −k1k2γ̃
T(UD(L+A) + (L+A)TUD)γ̃, (35)
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where D = D(γ̃)W (γ̃) − 1
2
∂D(γ̃)
∂γ̃

W (γ̃)diag(γ̃2, ..., γ̃N ).

Thus, D = diag(d2, ..., dN ) is a diagonal matrix with

di = di(1− γ̃2
i ) +

∂di

2∂γ̃i
γ̃i(1− γ̃2

i ), i ≥ 2. Then, it follows

from (34) that di = 1, D = IN−1, and

V̇ (γ̃) = −k1k2γ̃
T(U(L+A) + (L+A)TU)γ̃. (36)

By Assumption 1 and Lemma 2, U(L+A)+ (L+A)TU

is positive definite. It follows from (35) that V̇ (γ̃) ≤ 0
and γ̃ = 0 of system (33) is asymptotically stable for
all γ̃ ∈ (−1, 1). Since γ1 = 0, each γi(t) converges to 0
as t → ∞, and γ = 0 of system (32) is asymptotically
stable all γ ∈ (−1, 1).
We then show that the perturbation term −W (γ)Lε

with εi = ω̂i − µi tanh(νiQ
Tq̂i

0)/r converges to zero
exponentially. By (14), ω̂i(t) exponentially converges
to ̟ as t → ∞. By Proposition 1, QTq̂i

0(t) exponen-
tially converges to QTqi

0(t), and by (8) and Proposition
2, QTqi

0(t) = xei(t) asymptotically converges to zero.
Thus, εi(t) asymptotically converges to ̟ and −Lε(t)
asymptotically converges to zero as t → ∞.
Recall the nominal system of system (28), i.e., ṗei =

ω̄iSpei − (µi tanh(νixei))Q, which can be rewritten as

ṗei = Ai(t)pei + ǫi(t)pei, (37)

Ai(t) =

[

−µiνi ω̄i

−ω̄i 0

]

, ǫi(t) = µiνi

[

1− tanh(νixei)
νixei

0

0 0

]

.

Note that ω̄i is persistently exciting if v̄i does not con-
verge to 0. Suppose that v̄i(t) converges to 0. It follows
from (14) and (15) that γi converges to −̟/k1. It fol-
lows from (31) and −Lε → 0 that γ̇ does not converge
to zero, which yields a contradiction. Then, by Lemma
1, pei = 0 of the system ṗei = Ai(t)pei is globally expo-
nentially stable.
Moreover, xei(t) converges to 0 by Proposition (2),

and 1 − tanh(νixei)
νixei

converges to 0 as xei → 0 by

L’Hospital’s rule. Then, it follows from Khalil (2002,
Corollary 9.1 and Lemma 9.5) that pei = 0 of system
(37) is globally exponentially stable. Thus, −Lε(t) ex-
ponentially converges to zero as t → ∞
Hence, by Yu & Liu (2016b, Lemma 2.1), γ(t)

converges to zero asymptotically as t → ∞, i.e.,
lim
t→∞

φ(t) = 0. Noting that φ = Ls(θ − α), then

lim
t→∞

Ls(θ(t)−α) = 0. Moreover, it can be checked from

(15) that lim
t→∞

v̄i(t) = ̟r. This completes the proof.

With Propositions 1–3, the proof of Theorem 1 can
be summarized as follows.
Proof of Theorem 1: First, by Proposition 2 and

lim
t→∞

v̄i(t) = ̟r > 0 in Proposition 3, each pei(t) con-

verges to zero asymptotically as t → ∞. Then, Proposi-
tion 3 shows that θ(t) converges to set S asymptotically
as t → ∞. Finally, it follows from (16), lim

t→∞
v̄i(t) = ̟r,

Propositions 1 and 2 that lim
t→∞

ω̄i(t) = ̟.

6 

4 

1 

2 

5 

3 

Fig. 1. The topology of digraph G.

4 An Illustrative Example

Consider 6 dynamic unicycles (1) with digraph G
shown in Fig. 1, the sensor graph Gs(t) = G, and
the communication graph Gc(t) = {O, Ec(t)}, where
Ec(t) = {(3, 1), (6, 1)} if sT̄ ≤ t < (s + 0.3)T̄ ,
Ec(t) = {(2, 3), (5, 4)} if (s + 0.3)T̄ ≤ t < (s + 0.5)T̄ ,
Ec(t) = {(6, 5), (2, 5)} if (s + 0.5)T̄ ≤ t < (s + 0.7)T̄ ,
and Ec(t) = {(1, 6), (4, 6)} if (s+ 0.7)T̄ ≤ t < (s+ 1)T̄ ,
s = 0, 1, 2..., T̄ = 6s. Set l = 2. Thus, Assumptions 1–3
are satisfied. Assume I = J = 1, and let r = ̟ = 1.
The center q0 is set to [1.2 1.8]T. The initial states

of unicycles are θ1(0) = 0.5π, θ2(0) = 0, θ3(0) = 0.5π,
θ4(0) = π, θ5(0) = 1.5π, θ6(0) = 0, p1(0) = [−1 1.3]T,
p2(0) = [2 1.5]T, p3(0) = [1.5 1.6]T, p4(0) = [1.6 −1.6]T,
p5(0) = [1 − 1.5]T, p6(0) = [−1 −0.2]T, v1(0) = 1,
v2(0) = 2, v3(0) = 1.5, v4(0) = 0.6, v5(0) = 0.5,
v6(0) = 1.2, ω1(0) = 0.8, ω2(0) = 1.2, ω3(0) = 1.3,
ω4(0) = 0.9, ω5(0) = 1.1, and ω6(0) = 0.7.
Set k1 = k2 = k4 = 1, k3 = 10, µi = 2, and

νi = 1, i = 1, ..., 6. According to (17)–(18), we ob-
tain ω̂1(0) = 1.9701, ω̂2(0) = 1.5195, ω̂3(0) = 1.9805,
ω̂4(0) = 0.1195, ω̂5(0) = 1.5, ω̂6(0) = 0.2, q̂1

0(0) =
[0.1003 − 0.1623]T, q̂2

0(0) = [0.4236 0.4001]T, q̂3
0(0) =

[0.1003−0.1308]T, q̂4
0(0) = [−0.1511−0.3888]T, q̂5

0(0) =
[−0.3095 0.2803]T, and q̂6

0(0) = [0.2554 − 0.1103]T.
When the desired spacing isα = [0 π

3
2π
3 π 4π

3
5π
3 ], the

trajectories of all unicycles during 0–100s are presented
in Fig. 2, which shows that all unicycles converge to the
desired circular formation. Fig. 3 shows that the rela-
tive distance between each unicycle and the center q0
converges to r, and Fig. 4 illustrates that the unicycles
converges to the desired spaced formation. When the
desired spacing α is changed to α′ = [0 π

6
π
3

π
2

2π
3

5π
6 ],

the trajectories of all unicycles during 0–100s is shown in
Fig. 5. These simulation results verify the effectiveness
of the proposed control law.

5 Conclusion

In this paper, a distributed dynamic control law is pro-
posed for networked dynamic unicycles, such that unicy-
cles can globally converge to a circular formation with a
desired spacing along the circle. The topology of the net-
work is modeled by a directed graph, and center is only
known to one unicycle. For future work, we will study the
formation control of networked unicycles under proxim-
ity graph and consider the collision avoidance.
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Appendix Proof of Lemma 3

To prove Lemma 3, we only need to prove that for any
t1 < T , x(t) ≤ y(t), ∀t ∈ [t0, t1]. Consider the following
vectorial differential equation

ż = f(t, z) + λ1, z(t0) = y(t0), (A.1)

where t ∈ [t0, T ), λ > 0 is an arbitrary positive num-
ber. Denote the solution of (A.1) as z(t, λ). It fol-
lows from Khalil (2002, Theorem 3.5) that for any
ε > 0, there exists an δ > 0 such that for λ < δ,
|z(t, λ) − y(t)| < ε, ∀t ∈ [t0, t1] holds. Then, we have
two claims stated as follows.
Claim 1: For any λ > 0, z(t, λ) − y(t) ≥ x(t),

∀t ∈ [t0, t1].
For any i = 1, 2, ..., n, if x ≤ z and xi = zi at instant
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Fig. 5. Trajectories of unicycles with the desired spacing α
′.

t, then it follows from the condition ∂fi(t,x)
∂xj

≥ 0, ∀i 6= j,

that fi(t,x) ≤ fi(t, z).
Assume Claim 1 is not true. Then, there must ex-

ist an i, an instant t′ ∈ [t0, t1) and a δ′ > 0 such
that xi(t

′) = zi(t
′), xi(t) > zi(t) for t ∈ (t′, t′ + δ′)

and xj(t
′) ≤ zj(t

′) for any j 6= i. Thus, we have
x(t′) ≤ z(t′) and fi(t

′,x(t′)) ≤ fi(t
′, z(t′)). It

follows from (7) that D+xi(t
′) ≤ fi(t

′,x(t′)) ≤
fi(t

′, z(t′)) < fi(t
′,x(t′)) + λ = żi(t

′). However,

the inequality D+xi(t
′) = lim sup

∆t→0+

xi(t
′+∆t)−xi(t

′)
∆t

>

lim sup
∆t→0+

zi(t
′+∆t)−zi(t

′)
∆t

= żi(t
′) also holds, which yields

a contradiction.
Claim 2: y(t) ≥ x(t), ∀t ∈ [t0, t1].
Assume Claim 2 is not true. Then, there must exist an

i and an instant t′1 ∈ [t0, t1] such that xi(t
′
1) > yi(t

′
1). Let

ε′1 = 1
2 (xi(t

′
1)−yi(t

′
1)) > 0, and then there exist a δ′ > 0

such that |zi(t′1, λ)− yi(t
′
1)| ≤ |z(t′1, λ)−y(t′1)| < ε′1 for

any λ < δ′. Thus, zi(t
′
1, λ) <

1
2 (xi(t

′
1)+ yi(t

′
1)) < xi(t

′
1),

which yields a contradiction to Claim 1.
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