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Abstract

This paper investigates the circular formation control problem of multiple nonholonomic vehicles of unicycle type. The
measurement of each vehicle is based on its local coordinate frame and the communication network among vehicles is modeled
by a directed cycle graph. A distributed dynamic control law is designed by only using the local measurement of each vehicle
and information of its neighbors in the network. The proposed control law guarantees that all vehicles move along a common
circle with the given center and radius with a prespecified angular velocity, and maintain evenly spaced along the circle.
Furthermore, the velocity constraint including positive-minimum linear velocity of each vehicle is explicitly taken into account.
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1 Introduction

Circular formation control aims at designing a dis-
tributed control law such that a group of vehicles travel
along a common circle and maintain evenly spaced. In
practice, circular formation can be applied in the sce-
nario where vehicles are required to enclose, capture,
secure or monitor a target, e.g., mobile sensors for ocean
sampling (Leonard et al., 2007).
Many efforts have been devoted to the study of cir-

cular formation control. Sepulchre et al. (2007, 2008)
presented a comprehensive investigation on the circular
formation of multiple vehicles with identical unit linear
velocity. In Sepulchre et al. (2007), gradient control laws
based on potential functions were proposed for vehicles
with all-to-all communication, which was generalized to
vehicles with limited communication in Sepulchre et al.
(2008). Chen & Zhang (2011) studied the collective cir-
cular motion under a jointly connected condition. An
average system was used to approximate the closed-
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loop system by ignoring the first order of smallness
O(1/ω0), where ω0 is the steady-state angular velocity.
Then, stability analysis was given on the approximated
system. Later, Chen & Zhang (2013) further consid-
ered the case where each vehicle has a local coordinate
frame. El-Hawwary & Maggiore (2013) formulated the
circular formation control problem as a set stabilization
problem and proposed a hierarchical design approach.
Another research direction on this topic is to consider

the ring-networked vehicles, which needs minimum
communication links. Marshall et al. (2004, 2006a) con-
sidered the formation of multiple vehicles in cyclic
pursuit and gave stability analysis on the linearized
system. It was shown that the equilibrium formations
of multi-vehicle systems are generalized regular polygon
formations. Sinha & Ghose (2007) considered the cyclic
pursuit problem of vehicles with heterogenous constant
linear velocities. Later, Zheng et al. (2009) proposed a
projection-based cyclic pursuit control law such that
the trajectories of vehicles will never diverge. It is also
noted that several works studied the case where all
vehicles know the center and radius of the common
circle and the common steady-state velocity. In partic-
ular, Ceccarelli et al. (2008) considered the vehicle of
which the onboard sensor has limited visibility region.
In Summers et al. (2009), even spacing along a given
circle was achieved by vehicles with velocity constraint.
Lan et al. (2010) proposed a hybrid control law using
local measurements. In addition, some results on net-
worked double-integrators (Pavone & Frazzoli, 2007;
Ren, 2009; Ramirez-Riberos et al., 2010; Sharma et al.,
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2013) can be applied to nonholonomic vehicles after
local feedback linearization as shown in Ren & Atkins
(2007). Recently, Seyboth et al. (2014) and Zheng et al.
(2015) studied circular formations where the linear ve-
locities of vehicles are nonidentical in the steady state.
In this paper, the circular formation is prespecified

with the center and radius of the common circle and the
steady-state velocity of vehicles. Each vehicle has its
local coordinate frame and the communication network
is modeled by a directed cycle graph. A distributed dy-
namic control law without using any global information
is proposed to globally stabilize vehicles to the pre-
specified circular formation. Similar to Sepulchre et al.
(2008), the proposed dynamic control law requires both
local measurement and communication.
The main contribution of this paper lies in the follow-

ing aspects. First, the proposed control law for a pre-
specified circular formation does not rely on any global
information, including the center and radius of the com-
mon circle, the steady-state velocity, the total number
of vehicles, as well as a global inertial frame and a com-
mon reference direction. Second, global asymptotical
stability of the closed-loop system instead of a linearized
system (Marshall et al., 2004, 2006a) or an approxi-
mated system (Chen & Zhang, 2011, 2013) is guaran-
teed. Third, the proposed control law explicitly takes
into account the velocity constraint including positive-
minimum linear velocity, and thus can be applied to
vehicles subject to stall conditions, such as fixed-wing
unmanned aerial vehicles (Ren & Beard, 2004).
This paper is organized as follows. In Section 2, the

problem formulation and a technical lemma are given. In
Section 3, the design procedure of the proposed control
law is presented. Section 4 presents the main results and
Section 5 shows the simulation results of an illustrative
example. Finally, the conclusion is drawn in Section 6.
Notations: Throughout the paper, the norm ‖x‖ of a

vector x ∈ R
n is defined as ‖x‖ = (

∑n
i=1 |xi|2)

1

2 .

2 Preliminaries

2.1 Problem Formulation

Consider N nonholonomic vehicles of unicycle type.
The kinematic model of each vehicle is described by:

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi, i = 1, ..., N, (1)

where pi := [xi yi]
T ∈ R

2 is the coordinate of the center
of mass (position) and θi ∈ R is the heading angle (ori-
entation) of each vehicle in the inertial frame (see Fig.
1(a)). The linear velocity vi ∈ R and the angular veloc-
ity ωi ∈ R are control inputs.
Based on the pursuit graph (Marshall et al., 2006a,

Definition 2), the topology of the communication net-
work among vehicles is modeled by a directed cycle graph
G = {O, E} which consists of a finite set of nodes O =

(a) Local measurement
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(b) Directed cycle graph G

Fig. 1. Illustration of measurement in the coordinate frame
of vehicle i when there is a directed edge (i, i+) in G.

{1, ..., N} representing N vehicles, and a set of edges
E = {(j, i) : i 6= j, i, j ∈ O} containing directed edges
from node j to node i. For each node i, there exists one
incoming edge (i-, i) and one outgoing edge (i, i+), where
node i- is called the pre-neighbor of node i and node i+
is called the next-neighbor of node i (see Fig. 1(b)).
A directed edge (i, i+) means that vehicle i can send

its information to vehicle i+ and can measure the states
of vehicle i+ in its local coordinate frame. The coordinate
frame of vehicle i has the origin at its position pi and
the x-axis coincident with its orientation θi. The states
pi+ = [xi+ yi+]

T and θi+ measured in the coordinate frame
of vehicle i is denoted by pii+ and θii+ respectively (see
Fig. 1(a)). It is noted that the information flow of this
network is not strictly one-way since the relative states
between vehicle i and i+ are measured by vehicle i. Each
vehicle i can measure neither its state [pT

i θi]
T nor the

relative position pi − pj due to a lack of a global inertial
frame and a common reference direction respectively.

A circular formation requires vehicles to move with a
constant angular velocity ωc along a common circle with
the center qc := [xc yc]

T and radius rc, and to main-
tain evenly spaced along the circle. The counterclock-
wise (ωc > 0) circular formation is formally defined as:

Definition 2.1 A set C̄ρ(t) = {[p̄T

i (t) θ̄i(t) ω̄i(t) v̄i(t)]
T ∈

R
5, i = 1, ..., N} is a circular formation with the forma-

tion parameter ρ = [qTc rc ωc]
T ∈ R

2 × R
+ × R

+, if

p̄i(t)− qc = rc[sin θ̄i(t) − cos θ̄i(t)]
T, (2)

‖p̄i(i+)(t)‖ = ‖p̄i+(i++)(t)‖ = ... = ‖p̄(i-)i(t)‖, (3)

ω̄i(t) = ωc, v̄i(t) = ωcrc, (4)

for all t ≥ 0, where p̄i(i+) = p̄i − p̄i+.

Now, the circular formation control problem consid-
ered in this paper is formally defined as follows.

Definition 2.2 Consider N vehicles (1) and the com-
munication digraph G, and define C(t) = {[pT

i (t) θi(t)
ωi(t) vi(t)]

T ∈ R
5, i = 1, ..., N}. Given a formation pa-

rameter ρ = [qTc rc ωc]
T ∈ R

2 × R
+ × R

+, for vehicle
i, i = 1, ..., N , with any initial states [pT

i (t0) θi(t0)]
T ∈

2
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R
3, ∀t0 ≥ 0, find a dynamic control law in the form of

[vi ωi]
T
= σ(ρ̂ii, mi, ̺

i-
i-),

˙̂ρii = κ(ρ̂ii, ̺
i-
i-), (5)

such that C(t) converges to a circular formation C̄ρ(t) as
t → ∞, where ρ̂ii, to be designed later, is the estimate
of ρ in the local coordinate frame, ̺i-i- is the information
of its pre-neighbor, mi is the local measurement, and
functions σ(·) and κ(·) are both sufficiently smooth.

In this paper, we consider the circular formation con-
trol problem under the following assumption:
[A1] Only one vehicle l knows the formation param-

eter in its local coordinate frame at the initial time t0,
i.e., [qlTc (t0) rc ωc]

T.
In general, vehicle l is anonymous and other vehicles

cannot identify it.

Remark 2.1 To make vehicles maintain a cyclic pur-
suit manner, each vehicle is only required to connect to
its neighbors by onboard point-to-point communication
device and sensor. In Marshall et al. (2006b), the prac-
ticality of cyclic pursuit as a distributed control strategy
for multiple mobile robots was demonstrated by exper-
iment. Since devices and sensors are usually distance-
constrained in practice, vehicles need to locate within a
bounded space such that the network is connected.

Remark 2.2 Collision avoidance is not included in this
paper, and we may assume that vehicles move on differ-
ent altitudes as in Seyboth et al. (2014). Approaches to
collision avoidance will be explored in future.

2.2 A Technical Lemma

In this section, we present a technical lemma which
will be used in stability analysis of the resulting closed-
loop system. Consider the following system:

χ̇ = f(χ, d(t)) + g(χ, ξ, d(t)), (6)

whereχ ∈ R
n is the state, ξ ∈ R

m is an exogenous signal,
d : R≥0 7→ D is a time-varying function and D is a com-
pact subset of Rq. f(χ, d(t)) and g(χ, ξ, d(t)) are contin-
uous in their arguments. f(χ, d(t)) is locally Lipschitz
on χ uniformly on d (Lin et al., 1996) and g(χ, ξ, d(t))
is locally Lipschitz on (χ, ξ) uniformly on d. System (6)
can be viewed as a perturbation of the nominal system

χ̇ = f(χ, d(t)). (7)

Lemma 2.1 Let χ = 0 be an equilibrium point for sys-
tem (6). If conditions [C1]-[C3] are satisfied, system (6)
is globally uniformly asymptotically stable at χ = 0.
[C1] The nominal system (7) is globally uniformly

asymptotically stable with a Lyapunov function V : R≥0

×R
n 7→ R≥0 such that for all t ≥ 0 and all χ ∈ R

n,

W (χ) ≤ V (t, χ) ≤ W (χ), (8)
∂V (t,χ)

∂t
+ ∂V (t,χ)

∂χ
f(χ, d(t)) ≤ −W (χ), (9)

∥

∥

∥

∂V (t,χ)
∂χ

∥

∥

∥
‖χ‖ ≤ c1V (t, χ), ∀‖χ‖ ≥ ζ, (10)

∥

∥

∥

∂V (t,χ)
∂χ

∥

∥

∥
≤ c2, ∀‖χ‖ ≤ ζ, (11)

where W (χ) and W (χ) are two class K∞ functions,
W (χ) is a positive semi-definite function, and c1 > 0,
ζ > 0, and c2 > 0 are some constants.
[C2] There exists a class KL function β(·) and a class

K function α(·), such that for all ξ(t0) ∈ R
m, ‖ξ(t)‖ ≤

β(‖ξ(t0)‖, t−t0) and
∫∞

t0
‖ξ(t)‖dt ≤ α(‖ξ(t0)‖), ∀t ≥ t0.

[C3] The function g(χ, ξ, d(t)) satisfies that for all
χ ∈ R

n and all ξ ∈ R
m,

‖g(χ, ξ, d(t))‖ ≤ ‖ξ‖ (Θ1(‖ξ‖) + ‖χ‖Θ2(‖ξ‖)) , (12)

where Θ1, Θ2 : R≥0 7→ R≥0 are continuous functions.

The proof can be found in Yu & Liu (2016) and thus
omitted here.When d(t) ≡ d, systems (6) and (7) reduce
to autonomous systems. The notion of “uniformly” is
not necessary and V (t, χ) can be replaced by V (χ).

3 Control Law Design

In this section, we present the control law design for
the circular formation control problem.
To begin with, define

R(z) =

[

cos z sin z

− sin z cos z

]

, S =

[

0 1

-1 0

]

,
P = [0 -1]T,

Q = [1 0]T,

where it is noted that S + ST = 0.
Next, pi+, θi+, and qc measured in the coordinate frame

of vehicle i can be expressed as pii+ = R(θi)(pi+ − pi),
θii+ = θi+ −θi, and qic = R(θi)(qc−pi) respectively. Then,

q̇ic = ωiSq
i
c − viQ. (13)

Define the formation tracking error pei = [xei yei]
T as

pei = R(θi)(qc − pi + rc[sin θi − cos θi]
T) = qic + rcP.

As a result, the error dynamics are

ṗei = ωiSpei − (vi − ωirc)Q. (14)

It is noted that the objective described in (2) can be
achieved if pe = col(pe1, ..., peN ) converges to zero.
When vehicles travel along a common circle, the objec-

tive described in (3) can be achieved if θ = col(θ1, .., θN )
converges to E = {θ ∈ R

N : (θi+ − θi)mod 2π = 2π/N}.
Furthermore, [vi ωi]

T needs to be designed such that
its steady state can satisfy (4). However, note that only
vehicle l has access to the formation parameter.
In what follows, the design procedure of the proposed
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dynamic control law is presented in three steps. First,
a distributed observer is developed for vehicle i to esti-
mate the formation parameter. Then, an angular veloc-
ity controller is designed such that all vehicles can be
evenly spaced along the circle. Finally, a linear velocity
controller is proposed for global convergence to the com-
mon circle with the given center and radius. Meanwhile,
all velocities converge to the given common values.

3.1 Distributed Observer Design

Define an estimate of the formation parameter in the
coordinate frame of vehicle i as [q̂iTi r̂i ω̂i]

T ∈ R
2×R×R.

With the local measurement θii+, define angle φi as

φi =

{

θll+ + 2π = θl+ − θl + 2π, i = l

θii+ = θi+ − θi, i 6= l
. (15)

Then, a dynamic observer for vehicle i is designed as

˙̂qii = ωiSq̂
i
i − viQ+ ai(R(φi-)q̂

i-
i- −R(φi-)p

i-
i − q̂ii)

+bi(q
i
c − q̂ii), (16)

˙̂ri = ai(r̂i- − r̂i) + bi(rc − r̂i), (17)
˙̂ωi = ai(ω̂i- − ω̂i) + bi(ωc − ω̂i), i = 1, ..., N, (18)

where ai and bi are defined as: ai = 0 and bi = 1 if i = l;
ai = 1 and bi = 0, otherwise. Since vehicle l has access
to the formation parameter, it does not need to use the
estimate from its pre-neighbor.
The initial state [q̂iTi (t0) r̂i(t0) ω̂i(t0)]

T can be arbi-
trarily selected inR

2×R×R. The observer design is only
based on the local information [q̂iTi r̂i ω̂i]

T and informa-
tion from its pre-neighbor vehicle i-, i.e., [q̂i-Ti- r̂i- ω̂i-]

T

and [pi-Ti φi-]
T. Thus, observer (16)-(18) is a distributed

one and the inter-vehicle communication can be imple-
mented as follows. First, the sensor of vehicle imeasures
pii+ and θii+ in the local coordinate frame. Then, the com-
munication device of vehicle i sends the local informa-
tion [q̂iTi r̂i ω̂i]

T and the local measurement [piTi+ φi]
T to

vehicle i+. Moreover, the distributed observer (16)-(18)
has a property as is stated in the following lemma.

Lemma 3.1 ConsiderN distributed dynamic observers
(16)-(18) and the communication digraph G. Given a
formation parameter [qTc rc ωc]

T ∈ R
2 × R

+ × R
+, un-

der assumption [A1], for any initial states [q̂iTi (t0) r̂i(t0)
ω̂i(t0)]

T ∈ R
4, ∀t0 ≥ 0, i = 1, ..., N , [q̂iTi (t) r̂i(t) ω̂i(t)]

T

converge to [qiTc (t) rc ωc]
T exponentially as t → ∞.

The proof is given in Appendix A.

3.2 Controller Design for Angular Velocity

In order to achieve objectives described in (3) and (4),
the angular velocity controller for vehicle i is designed as

ωi = ω̂i + kω tanh(µ(φi − φi-)), (19)

where φi is defined in (15), kω > 0 and µ > 0 are design
parameters, and function tanh(·) is used for achieving
bounded control input. For vehicle i, φi and φi- are ob-
tained from the local measurement and the communi-
cation from its pre-neighbor respectively. Then, we have
the following lemma.

Lemma 3.2 Consider the communication digraph G,
and systems θ̇i = ωi, i = 1, ..., N , with the control law
(18)-(19). Under assumption [A1], for any initial states
θi(t0) ∈ R, i = 1, ..., N , ∀t0 ≥ 0, (θi+(t) − θi(t))mod 2π
converge to 2π/N asymptotically as t → ∞. Meanwhile,
ωi(t), i = 1, ..., N , converge to ωc.

Proof: Define

ϕi = φi+ − φi. (20)

Using (15), (19), and (20) yields

ϕ̇i = kω(tanh(µϕi+)− 2 tanh(µϕi) + tanh(µϕi-))

+ω̂i+ − 2ω̂i + ω̂i-. (21)

Denote ϕ = col(ϕl, ϕl+, ..., ϕl-) and T(ϕ) = col(tanh(µ
ϕl), tanh(µϕl+), ..., tanh(µϕl-)). The system consisting
of N systems in the form of (21) can be written in the
following compact form:

ϕ̇ = −kωLT(ϕ)− Lω̃, (22)

where L is the Laplacian matrix of the underlying graph
of G and ω̃ = col(ω̃l, ω̃l+, ..., ω̃l-) with ω̃i = ω̂i − ωc.
It is noted that (22) is in the form of (6). Lemma 2.1

will be used to prove that ϕ(t) → 0 as t → ∞.
Firstly, we will show that the nominal system ϕ̇ =

−kωLT(ϕ) is globally asymptotically stable. Motivated
by Ren (2008), consider the following Lyapunov function

candidate V (ϕ) =
∑N

i=1 log(cosh(µϕi)), which is posi-
tive definite and radially unbounded with respect to ϕ.
Taking the time derivative of V (ϕ) along the trajectories
of system ϕ̇ = −kωLT(ϕ) gives

V̇ (ϕ) = µ
∑N

i=1 ϕ̇i tanh(µϕi)

=−µkω
∑N

i=1(− tanh(µϕi) tanh(µϕi-)

− tanh(µϕi) tanh(µϕi+) + 2 tanh2(µϕi))

=−µkω
∑N

i=1(tanh(µϕi+)− tanh(µϕi))
2 ≤ 0.

Let S = {ϕ|V̇ (ϕ) ≡ 0}. Note that V̇ (ϕ) ≡ 0 im-
plies tanh(µϕ1) ≡ tanh(µϕ2) ≡ ... ≡ tanh(µϕN ).
Since tanh(·) is strictly increasing in (−∞,+∞), then
S = {ϕ|ϕ1 ≡ ϕ2 ≡ ... ≡ ϕN}. It follows from the defi-
nition of ϕi in (20) that ϕ1 + ϕ2 + ... + ϕN ≡ 0. Thus,
S = {ϕ|ϕ ≡ 0} and ϕ̇ ≡ 0 for ϕ ∈ S. By LaSalle’s In-
variance Principle, ϕ(t) → 0 asymptotically as t → ∞.
Hence, system ϕ̇ = −kωLT(ϕ) is globally asymptoti-
cally stable at ϕ = 0. Noting that V (ϕ) satisfies (8)-
(11), condition [C1] in Lemma 2.1 is satisfied.
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Secondly, Lemma 3.1 holds by assumption [A1] and
then ω̃ → 0 exponentially as t → ∞, which implies that
condition [C2] in Lemma 2.1 is satisfied.
Thirdly, −Lω̃ satisfies condition [C3] in Lemma 2.1.
Hence, by Lemma 2.1, system (22) is globally asymp-

totically stable at ϕ = 0, and it follows from (20) that

lim
t→∞

φ1(t) = lim
t→∞

φ2(t) = ... = lim
t→∞

φN (t). (23)

From the definition of φi in (15), we have
∑N

i=1 φi ≡ 2π
and thus lim

t→∞
φi(t) = 2π/N . Then, lim

t→∞
(θl+(t)−θl(t)) =

2π/N − 2π and lim
t→∞

(θi+(t)− θi(t)) = 2π/N, i 6= l, i.e.,

lim
t→∞

((θi+(t)− θi(t))mod 2π) = 2π/N, i = 1, .., N. (24)

Furthermore, using Lemma 3.1, (19) and (23), one can
conclude that ωi(t) converges to ωc as t → ∞. The proof
is thus completed.

Remark 3.1 It can be observed from (19) that the con-
troller design is independent of the total number of ve-
hicles N . Thus, if the ring structure of the network is
maintained, Lemma 3.2 holds when some vehicles are
added into the group or removed from the group.

3.3 Controller Design for Linear Velocity

In order to achieve objectives described in (2) and (4),
the linear velocity controller for vehicle i is designed as

vi = ωir̂i + kv tanh(νQ
T(q̂ii + r̂iP )), (25)

where kv > 0 and ν > 0 are design parameters, and
function tanh(·) is used for achieving bounded control
input. Then, we have the following lemma.

Lemma 3.3 Consider the communication digraph G,
and N systems in the form of (14) with the control law
consisting of (16)-(18), (19), and (25). Under assump-
tion [A1], for any initial states pei(t0) ∈ R

2, i = 1, ..., N ,
∀t0 ≥ 0, pei(t) converge to 0 asymptotically as t → ∞.
Meanwhile, vi(t), i = 1, ..., N , converge to ωcrc.

Proof: Define p̂ei = [x̂ei ŷei]
T as p̂ei = q̂ii + r̂iP . Then,

(25) can be rewritten as vi = wir̂i + kv tanh(νx̂ei).
Defining p̃ei = [x̃ei ỹei]

T as p̃ei = p̂ei − pei gives

p̃ei = q̂ii − qic + (r̂i − rc)P = q̃i + r̃iP. (26)

Let ξi = [p̃T

ei r̃i]
T = [x̃ei ỹei r̃i]

T. The closed-loop
system consisting of system (14) and the control law
composed of (16)-(18), (19), and (25) can be written as

ṗei = f(pei, ωi(t)) + g(pei, ξi, ωi(t)), (27)

where

f(pei, ωi(t)) = ωiSpei − (vei − ωirc)Q, (28)

g(pei, ξi, ωi(t)) = (vei − vi)Q, (29)

with vei = wirc + kv tanh(νxei). Moreover, vei − vi can
be expressed as

vei−vi = kv(tanh(νxei)− tanh(ν(xei + x̃ei)))−ωir̃i.(30)

By (19) and Lemma 3.1, ωi(t) is uniformly bounded
and thus ωi(t) ∈ Ωi with a compact set Ωi. It is noted
that (27) is in the form of (6). In what follows, Lemma
2.1 will be used to prove that pei(t) → 0 as t → ∞.
Firstly, we will show that the nominal system ṗei

= f(pei, ωi(t)) is globally uniformly asymptotically sta-
ble. Consider a Lyapunov function candidate Vi(t, pei) :
R≥0 × R

2 7→ R≥0 as Vi(t, pei) = 1
2p

T

eipei, which is
positive-definite, decrescent and radially unbounded.
Taking the time derivative of Vi(t, pei) along the trajec-
tories of the system ṗei = f(pei, ωi(t)) yields

V̇i(t, pei) =
1
2ωip

T

ei(S + ST)pei − kvxei tanh(νxei)

=−kvxei tanh(νxei) ≤ 0.

Thus, Vi(t, pei) is nonincreasing in t and bounded, which

implies that lim
t→∞

∫ t

0 V̇i(τ, pei)dτ exists and is finite.

Since Vi(t, pei) ≤ Vi(t0, pei(t0)), ∀t ≥ t0, pei is bounded

and ṗei is also bounded. Then, V̈i(t, pei) is bounded in t

and V̇i(t, pei) is uniformly continuous in t. By Barbalat’s
Lemma, lim

t→∞
xei(t) = 0.

Using (28) leads to ẋei = ωiyei − kv tanh(νxei).
Let h1(t) = ωiyei and h2(t) = −kv tanh(νxei). Since
lim
t→∞

xei(t) = 0, we have lim
t→∞

h2(t) = 0. It follows from

(19)-(20) that ω̇i = ˙̂ωi + µkωϕ̇i- sech
2(µϕi-). Using

Lemma 3.1 and (21), ˙̂ωi and ϕ̇i- are bounded. Then,

ω̇i is bounded. Since yei and ẏei are bounded, ḣ1(t) is
bounded and h1(t) is uniformly continuous in t. By the
extended Barbalat’s Lemma (Dixon et al., 2001, Lemma
A.14), lim

t→∞
h1(t) = 0. Noting that lim

t→∞
ωi(t) = ωc > 0

from Lemma 3.2, one can conclude that lim
t→∞

yei(t) = 0.

Hence, the nominal system ṗei = f(pei, ωi(t)) is glob-
ally uniformly asymptotically stable at pei = 0. Noting
that the Lyapunov function Vi(t, pei) satisfies (8)-(11),
condition [C1] in Lemma 2.1 is satisfied.
Secondly, it follows from Lemma 3.1 and (26) that

ξi(t) converges to 0 exponentially as t → ∞. Thus, con-
dition [C2] in Lemma 2.1 is satisfied.
Thirdly, it follows from (29) and (30) that

‖g(pei, ξi, ωi(t))‖= |vei − vi| ≤ 2kvν|x̃ei|+ |r̃i||ωi|
≤ |ξi|(2kvν + supΩi), (31)

which satisfies condition [C3] in Lemma 2.1.
Therefore, by Lemma 2.1, system (27) is globally uni-

formly asymptotically stable at pei = 0. Then, using (25)
and Lemmas 3.1 and 3.2, one can conclude that vi(t) con-
verges to ωcrc as t → ∞. The proof is thus completed.
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4 Main Results

The proposed control law consisting of (16)-(18),
(19), and (25) is only based on the local information
[q̂iTi r̂i ω̂i]

T, local measurement φi and information
from its pre-neighbor vehicle i-, i.e., [q̂i-Ti- r̂i- ω̂i-]

T and
[pi-Ti φi-]

T, and thus can be described in the form of (5).
Now, we are ready to present the main result as follows.

Theorem 4.1 The distributed dynamic control law
consisting of (16)-(18), (19), and (25) solves the circular
formation control problem under assumption [A1].

Proof: To prove Theorem 4.1, we need to establish
stability analysis on two augmented closed-loop systems
sequentially. First, consider the closed-loop system Σ1

consisting ofN systems θ̇i = ωi and the control law (18)-
(19). Using Lemma 2.1, the fact that θ = col(θ1, .., θN )
converges to the set E is proved in Lemma 3.2. Then,
consider the closed-loop system Σ2 consisting of N sys-
tems in the form of (14) and the control law composed
of (16)-(18), (19), and (25). Using Lemmas 2.1 and 3.2,
the result that pe = col(pe1, ..., peN ) converges to zero
is established in Lemma 3.3. In addition, it follows from
Lemmas 3.2 and 3.3 that the objective described in (4)
can also be achieved. Thus, the proof of Theorem 4.1
follows directly from those of Lemmas 3.2 and 3.3.

Remark 4.1 To show stability of these two augmented
closed-loop systems Σ1 and Σ2, one typical way is to find
two appropriate Lyapunov function candidates V1(θ, ω̃)
and V2(pe, q̃, r̃, ω̃) for Σ

1 and Σ2 respectively, where q̃ =
col(q̃1..., q̃N ), r̃ = col(r̃1, ..., r̃N ), and ω̃ = col(ω̃1, ..., ω̃N )
with q̃i = q̂ii−qic, r̃i = r̂i−rc, and ω̃i = ω̂i−ωc. However,
it is not easy to find such Lyapunov function candidates,
especially V2(pe, q̃, r̃, ω̃) for Σ2. To overcome this diffi-
culty, Lemma 2.1 is developed. Then, we rewrite Σ1 and
Σ2 in the form of (6), and use Lemma 2.1 to prove Lem-
mas 3.2 and 3.3 from which Theorem 4.1 follows. In this
way, there is no need to find V1(θ, ω̃) and V2(pe, q̃, r̃, ω̃).
The key of using Lemma 2.1 is to consider the closed-
loop system as a perturbed system and the perturbation
results from the inter-vehicle communication.

More interestingly, consider the case where each vehi-
cle is subject to the following velocity constraint:

vi ∈ [vmin, vmax], ωi ∈ [−ωmax, ωmax], (32)

where vmax > vmin > 0 and ωmax > 0 are known con-
stants. Constraint (32) can be used to describe the ve-
locity constraint of vehicles subject to stall conditions,
e.g., fixed-wing unmanned aerial vehicles (Ren & Beard,
2004). In this case, the following assumption is needed.
[A2] rc ∈ [rc, rc] and ωc ∈ [ωc, ωc], where rc > rc > 0

and ωc > ωc > 0 are known constants satisfying ωc <
ωmax, ωcrc < vmax and ωcrc > vmin.
Assumption [A2] requires that rc and ωc are properly

bounded with respect to the bounds of the velocity con-
straint (32). Then, we have the following proposition.

Proposition 4.1 Under assumption [A2], the velocity
constraint (32) can be always satisfied if [r̂i(t0) ω̂i(t0)]

T

∈ [rc, r̄c] × [ωc, ωc], i = 1, ..., N, ∀t ≥ t0, and the
parameters µ, ν, kω and kv are chosen as µ, ν > 0 and

0 < kω < min(∆v/rc, ∆v/rc, ωmax − ωc), (33)

0 < kv ≤ min(∆v − kωrc, ∆v − kωrc), (34)

where ∆v = ωcrc − vmin and ∆v = vmax − ωcrc.

Proof: Letting l = 1 and using induction, we obtain

r̃i(t) = e-(t-t0)
∑i

k=1
(t−t0)

k-1

(k−1)! r̃i-k+1(t0), ∀i ∈ [1, N ], (35)

from (A.1). Note that e-(t-t0)
∑i

k=1
(t−t0)

k-1

(k−1)! ∈ (0, 1]. For

all r̃i(t0) ≤ rc−rc, i = 1, ..., N , (35) and rc−rc ≥ 0 lead
to r̃i(t) ≤ rc − rc, ∀t ≥ t0, while for all r̃i(t0) ≥ rc − rc,
(35) and rc − rc ≤ 0 lead to r̃i(t) ≥ rc − rc, ∀t ≥ t0.
Thus, r̂i(t) ∈ [rc, r̄c], ∀t ≥ t0 holds if r̂i(t0) ∈ [rc, r̄c].
Similarly, ω̂i(t) ∈ [ωc, ωc], ∀t ≥ t0 holds if ω̂i(t0) ∈
[ωc, ωc]. By assumption [A2], kω satisfying (33) exists. It
follows from (19) and (33) that ωi(t) ∈ [−ωmax, ωmax],
∀t ≥ t0. Since kω meets (33), kv satisfying (34) exists.
It follows from (25) and (33) that vi(t) ∈ [vmin, vmax],
∀t ≥ t0. The proof is thus completed.

Remark 4.2 In Marshall et al. (2004), Ceccarelli et al.
(2008) and Sepulchre et al. (2007, 2008), vehicles were
assumed to have identical constant vi and a circular for-
mation can be achieved by controlling ωi. As pointed
out in Seyboth et al. (2014), the assumption of identical
vi may not be satisfied in practice. Note that the ini-
tial state [q̂iTi (t0) r̂i(t0) ω̂i(t0)]

T can be selected based
on the initial velocities vi(t0) and ωi(t0). Our approach
can address the case where vehicles initially have non-
identical vi and do not know a common value ωcrc. For
this case, Seyboth et al. (2014) made vehicles converge
to even spacing along a common circle while maintaining
nonidentical constant vi. This objective is not the same
as that of this paper, since in Seyboth et al. (2014) the
center of the circle is not prespecified and consensus of
vi (objective described in (4)) is not required.

Remark 4.3 Sepulchre et al. (2007) and Summers et al.
(2009) required all vehicles to know the center of the
common circle. Besides, in Sepulchre et al. (2007, 2008)
and Summers et al. (2009), all vehicles need to know rc
and ωc. By contrast, we only require one anonymous
vehicle to know such information. One advantage of
our approach is that if qc, rc, and ωc are required to
change, we only need to command one vehicle and then
all vehicles will converge to a new circular formation.
Moreover, to achieve the convergence to a given circle,
it is required in Summers et al. (2009) that either the
initial heading angle of each vehicle is in a certain range,
or the initial distance to the center is larger than the
desired radius. Furthermore, in Sepulchre et al. (2007,
2008), a common reference direction was required for
obtaining the relative positions and the total number of
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vehicles N had to be known to each vehicle. While with
our method, vehicles with any initial heading angles
and any initial distances to the center can converge to a
given circle. Each vehicle can only use its local coordi-
nate frame and does not require the knowledge of N .

Remark 4.4 Seyboth et al. (2014) and Sepulchre et al.
(2007, 2008) also considered the problem of making all
orientations synchronized, i.e., θi = θj, ∀i, j. To this end,
we can simply modify the definition of φi in (15) as φi =

θii+ = θi+−θi, ∀i. In this case,
∑N

i=1 φi ≡ 0 and it follows
from the proof of Lemma 3.2 that lim

t→∞
(θi+(t)− θi(t)) =

0, ∀i. It is noted that with our method, the switching
between even spacing and orientation synchronization
only requires to switch the controller of vehicle l, while in
Sepulchre et al. (2007, 2008) and Seyboth et al. (2014),
all vehicles need to switch the sign of gain K in their
controllers. Based on this extension, we may further set
ωc = 0 and rc > 0, and let (25) switch to vi = kv r̂i. Then,
all vehicles will switch to the parallel motion towards the
same orientation as in Sepulchre et al. (2008).

5 An Illustrative Example

Consider a group of 5 nonholonomic vehicles (1) with
labels 1-5 in the communication digraph G (see Fig.
1(b)). By default, all variables are in SI units.
Set l = 1 and the velocity constraint (32) is given

as vi ∈ [3 − 1.8
√
2, 3 + 1.8

√
2] and ωi ∈ [-0.4, 0.4].

The bounds in assumption [A2] are given as rc = 8,
rc = 12, ωc = 0.15, and ωc = 0.3. Based on Proposition
4.1, the design parameters in (19) and (25) are tuned as
µ = 2, ν = 0.5, kω = 0.0186, and kv = 0.5965.
In this example, the formation parameter is initially

given by qc = [0 0]T, rc = 8, ωc = 0.3 and is switched to
qc = [-40 20]T, rc = 10, ωc = 0.2 at ts = 160s. Besides,
vehicle 5 will leave the group at the time instant ts. From
ts onwards, vehicle 4 will be the pre-neighbor of vehicle
1. The initial states of vehicles are given as θ1(0) = π,
θ2(0) = -5π/6, θ3(0) = 0, θ4(0) = -π/3, θ5(0) = π/6,
p1(0) = [-30 10]T, p2(0) = [-20 -20]T, p3(0) = [0 -30]T,
p4(0) = [-20 10]T, and p5(0) = [20 10]T. The initial
states [q̂iTi (0) r̂i(0) ω̂i(0)]

T of observer (16)-(18) are ran-
domly chosen in R

2 × [rc, r̄c]× [ωc, ωc].
Fig. 2 shows the trajectories of all vehicles. In Fig. 2,

at first, vehicles converge to the circular formation with
qc = [0 0]T and rc = 8. When qc and rc are switched
and vehicle 5 leaves, the remaining 4 vehicles resume
even spacing and converge to the new circular forma-
tion with qc = [-40 20]T and rc = 10. Fig. 3 shows that
the relative distance between each vehicle and the cen-
ter converges to the given radius. Fig. 4 illustrates that
the convergence to even spacing can be achieved inde-
pendent of the total number of vehicles N . Fig. 5 and
Fig. 6 not only show that all velocities converge to the
given values, but also indicate that velocity constraint
(32) is always satisfied. These simulation results verify
effectiveness of the proposed control law.
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6 Conclusion

In this paper, we have proposed a distributed circular
formation control law for ring-networked nonholonomic
vehicles with local coordinate frames. Only one anony-
mous vehicle is required to know the parameter describ-
ing the prespecified circular formation. Furthermore, the
velocity constraint including positive-minimum linear
velocity is considered. In the future, we will investigate
the circular formation with time-varying formation pa-
rameter, unknown disturbance and collision avoidance.

A Proof of Lemma 3.1

Define q̃i = q̂ii − qic, r̃i = r̂i− rc, and ω̃i = ω̂i−ωc. De-
note r̃ = col(r̃l, r̃l+, ..., r̃l-) and ω̃ = col(ω̃l, ω̃l+, ..., ω̃l-).
First, using (17)-(18), we have

˙̃r = −Hr̃, ˙̃ω = −Hω̃, (A.1)
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where H = {hkj} is a lower-triangular matrix with
hkk = 1, k = 1, ..., N ; hk(k-1) = -1, k = 2, ..., N , and
others all zero. Thus, −H is Hurwitz and system (A.1)
is globally exponentially stable.
Next, since qic = pii-+R(φi-)q

i-
c and pii- = −R(φi-)p

i-
i ,

−R(φi-)p
i-
i = qic −R(φi-)q

i-
c . (A.2)

Using (A.2), it follows from (13) and (16) that

˙̃ql = ωlSq̃l − q̃l, (A.3a)
˙̃ql+ = ωl+Sq̃l+ − q̃l+ +R(φl)q̃l, (A.3b)

...
...

˙̃ql- = ωl-Sq̃l- − q̃l- +R(φl--)q̃l--. (A.3c)

Consider system (A.3a) and a Lyapunov function can-
didate Vl(q̃l) = 1

2 q̃
T

l q̃l. Taking the time derivative of
Vl(q̃l) along the trajectories of system (A.3a) yields

V̇l(q̃l) =
1
2ωlq̃

T

l (S + ST)q̃l − q̃Tl q̃l ≤ −‖q̃l‖2 ≤ 0. (A.4)

Since Vl(q̃l) =
1
2‖q̃l‖2, it follows from (A.4) that d‖q̃l‖/dt

≤ −‖q̃l‖ when ‖q̃l‖ 6= 0, and D+‖q̃l‖ ≤ 0 when ‖q̃l‖ = 0.
Thus, D+‖q̃l‖ ≤ −‖q̃l‖ holds for all ‖q̃l‖. By the com-
parison lemma, we have

‖q̃l(t)‖ ≤ e-(t-t0)‖q̃l(t0)‖. (A.5)

Then, consider system (A.3b) and a Lyapunov func-
tion candidate Vl+(q̃l+) =

1
2 q̃

T

l+q̃l+. Taking its time deriva-
tive along the trajectories of system (A.3b) gives

V̇l+(q̃l+) =
1
2 (q̃

T

l+R(φl)q̃l + q̃Tl R
T(φl)q̃l+)− q̃Tl+q̃l+

≤‖q̃l+‖‖R(φl)q̃l‖ − ‖q̃l+‖2 = ‖q̃l+‖‖q̃l‖ − ‖q̃l+‖2, (A.6)

where it is noted that ‖R(φl)q̃l‖ = ‖q̃l‖. Similarly, it fol-
lows from (A.6) that D+‖q̃l+‖ ≤ ‖q̃l‖−‖q̃l+‖ for all ‖q̃l+‖.
By the comparison lemma and (A.5), ‖q̃l+(t)‖ satisfies

‖q̃l+(t)‖ ≤ e-(t-t0)‖q̃l+(t0)‖+
∫ t

t0
e-(t-τ)‖q̃l(τ)‖dτ

≤ e-(t-t0)‖q̃l+(t0)‖+ ‖q̃l(t0)‖
∫ t

t0
e-(t-τ)e-(τ-t0)dτ

≤ e-(t-t0)‖q̃l+(t0)‖+ e-(t-t0)(t− t0)‖q̃l(t0)‖.

Thus, letting l = 1 and using induction, we can obtain

‖q̃i(t)‖ ≤ e-(t-t0)
∑i

k=1
(t−t0)

k-1

(k−1)! ‖q̃i-k+1(t0)‖, ∀i ∈ [1, N ],

which concludes that all ‖q̃i(t)‖ converge to 0 exponen-
tially as t → ∞. The proof is thus completed.
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